75 research outputs found

    Sputum microbe community alterations induced by long-term inhaled corticosteroid use are associated with airway function in chronic obstructive pulmonary disease patients based on metagenomic next-generation sequencing (mNGS)

    Get PDF
    Objective: Inhaled corticosteroids (ICS) are widely used in chronic obstructive pulmonary disease (COPD) patients as a treatment option. However, ICS may also increase the risk of pneumonia and alter the composition of airway microbiota. In clinical application, the overuse of ICS exists pervasively and may potentially lead to adverse effects. Whether the long-term use of ICS confers enough benefit to COPD patients to justify its use so far remains unknown. Therefore, this study employed a single-center retrospective cohort study to compare alterations in airway function and the sputum microbial community structure between COPD patients who had undergone either long-term or short-term treatment with ICS.Methods: Sixty stable COPD patients who had used ICS were recruited and classified into the long-term use group (more than 3 months) and short-term use group (less than 3 months). The demographic features and clinical information of the subjects were investigated and their sputum samples were collected and subjected to metagenomic next-generation sequencing (mNGS).Results: The study found that compared with short-term ICS use, long-term ICS use did not further improve the clinical airway function, decrease the number of acute exacerbations, or decrease hospital readmission. In terms of sputum microbiota, the long-term use of ICS significantly altered the beta diversity of the microbial community structure (p < 0.05) and the top three phyla differed between the two groups. At the genus level, long-term ICS induced higher relative abundances of Abiotrophia, Schaalia, Granulicatella, Mogibacterium, Sphingobium, and Paraeggerthella compared to short-term ICS use. Additionally, alpha diversity was positively associated with clinical airway indicators (pre-bronchodilatory FEV1 and pre-bronchodilatory FVC) in the long-term ICS group. The relative abundances of Rothia, Granulicatella, Schaalia, and Mogibacterium genera had positive correlations with the eosinophil % (of all white blood cells). Conclusion: This study reveals the effect of long-term and short-term ICS use on sputum microbiota among COPD patients and provides a reference for the appropriate application of clinical ICS treatment in COPD patients

    Phase behavior of ABC-type triple-hydrophilic block copolymers in aqueous solutions

    No full text
    The phase behavior of symmetric ABC triple-hydrophilic triblock copolymers in concentrated aqueous solutions is investigated using a simulated annealing technique. Two typical cases, in which the hydrophilicity of the middle B-block is either stronger or weaker than that of the end A- and C-blocks, are studied. In these two cases, a variety of phase diagrams are constructed as a function of the volume fraction of the B-block and the copolymer concentration (Ί \Phi for both non-frustrated and frustrated copolymers. Structures, such as two-color alternatingly packed cylinders or gyroid, and lamellae-in-lamellae etc. that do not occur in the melt system, are obtained in solutions. Rich phase transition sequences, especially re-entrant phase transitions involving complex continuous networks of alternating gyroid and alternating diamond are observed for a given copolymer with decreasing Ί \Phi . The difference in hydrophilicity among different blocks can result in inhomogeneous distribution of solvent molecules in the morphology, and with the decrease of Ί \Phi , the distribution of solvent molecules presents a non-monotonic variation. This results in a non-monotonic variation of the effective volume fraction of each domain with the decrease of Ί \Phi , which induces the re-entrant phase transitions. The presence of a good solvent for all the blocks can cause changes in the effective segregation strengths between different blocks and also in chain conformations, hence can alter the bulk phases and results in the occurrence of new structures and phase transitions. Especially, structures having A-C interfaces or A-C mixed domains can be obtained even in the non-frustrated copolymer systems, and structures obtained in the frustrated systems may be similar to those obtained in the non-frustrated systems. The window of the alternating gyroid structures may occupy a large part of the phase diagram for non-frustrated copolymers with stronger B-hydrophilicity. This behavior can be used to tune the self-assembled structures of block copolymers

    Improved differential current protection scheme for CSC‐HVDC transmission lines

    No full text

    Clickable Analogue of Cerulenin as Chemical Probe to Explore Protein Palmitoylation

    No full text
    Dynamic palmitoylation is an important post-translational modification regulating protein localization, trafficking, and signaling activities. The Asp-His-His-Cys (DHHC) domain containing enzymes are evolutionarily conserved palmitoyl acyltransferases (PATs) mediating diverse protein S-palmitoylation. Cerulenin is a natural product inhibitor of fatty acid biosynthesis and protein palmitoylation, through irreversible alkylation of the cysteine residues in the enzymes. Here, we report the synthesis and characterization of a “clickable” and long alkyl chain analogue of cerulenin as a chemical probe to investigate its cellular targets and to label and profile PATs <i>in vitro</i> and in live cells. Our results showed that the probe could stably label the DHHC-family PATs and enable mass spectrometry studies of PATs and other target proteins in the cellular proteome. Such probe provides a new chemical tool to dissect the functions of palmitoylating enzymes in cell signaling and diseases and reveals new cellular targets of the natural product cerulenin
    • 

    corecore