27 research outputs found

    Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors

    Get PDF
    Bioimaging plays an important role in cancer diagnosis and treatment. However, imaging sensitivity and specificity still constitute key challenges. Nanotechnology-based imaging is particularly promising for overcoming these limitations because nanosized imaging agents can specifically home in on tumors via the "enhanced permeation and retention" (EPR) effect, thus resulting in enhanced imaging sensitivity and specificity. Here, we report an original nanosystem for positron emission tomography (PET) imaging based on an amphiphilic dendrimer, which bears multiple PET reporting units at the terminals. This dendrimer is able to self-assemble into small and uniform nanomicelles, which accumulate in tumors for effective PET imaging. Benefiting from the combined dendrimeric multivalence and EPR-mediated passive tumor targeting, this nanosystem demonstrates superior imaging sensitivity and specificity, with up to 14-fold increased PET signal ratios compared with the clinical gold reference 2-fluorodeoxyglucose ([18F]FDG). Most importantly, this dendrimer system can detect imaging-refractory low-glucose-uptake tumors that are otherwise undetectable using [18F]FDG. In addition, it is endowed with an excellent safety profile and favorable pharmacokinetics for PET imaging. Consequently, this dendrimer nanosystem constitutes an effective and promising approach for cancer imaging. Our study also demonstrates that nanotechnology based on self-assembling dendrimers provides a fresh perspective for biomedical imaging and cancer diagnosis

    Self-assembling supramolecular dendrimers for biomedical applications: lessons learned from poly(amidoamine) dendrimers

    No full text
    International audienceDendrimers, notable for their well-defined radial structures with numerous terminal functionalities, hold great promise for biomedical applications such as drug delivery, diagnostics, and therapeutics. However, their translation into clinical use has been greatly impeded by their challenging stepwise synthesis and difficult purification.To circumvent these obstacles, we have pioneered a self-assembly approach to constructing noncovalent supramolecular dendrimers using small amphiphilic dendrimer building units which can be easily synthesized and purified. By virtue of their amphipathic nature, the small amphiphilic dendrimers are able to self-assemble and generate large supramolecular dendrimers via noncovalent weak interactions such as van der Waals forces, H bonds, and electrostatic interactions. The so-created noncovalent dendrimers can mimic covalent dendrimers not only in terms of the radial structural feature emanating from a central core but also in their capacity to deliver drugs and imaging agents for biomedical applications. The noncovalent supramolecular dendrimers can be easily synthesized and modulated with regard to size, shape, and properties by varying the nature of the hydrophobic and hydrophilic entities as well as the dendrimer generation and terminal functionalities, ensuring their adaptability to specific applications. In particular, the dendritic structure of the amphiphilic building units permits the creation of large void spaces within the formed supramolecular dendrimers for the physical encapsulation of drugs, while the large number of surface functionalities can be exploited for both physical and chemical conjugation of pharmaceutic agents for drug delivery.Poly(amidoamine) (PAMAM) dendrimers are the most intensively studied for biomedical applications by virtue of their excellent biocompatibility imparted by their peptide-mimicking amide backbones and numerous interior and terminal amine functionalities. We present a short overview of our self-assembly strategy for constructing supramolecular PAMAM dendrimers for biomedical applications. Specifically, we start with the introduction of dendrimers and their synthesis, focusing on the innovative self-assembly synthesis of supramolecular dendrimers. We then detail the representative examples of the noncovalent supramolecular PAMAM dendrimers established in our group for the delivery of anticancer drugs, nucleic acid therapeutics, and imaging agents, either within the dendrimer interior or at the dendrimer terminals on the surface. Some of the supramolecular dendrimer nanosystems exhibit outstanding performance, excelling the corresponding clinical anticancer therapeutics and imaging agents. This self-assembly approach to creating supramolecular dendrimers is completely novel in concept yet easy to implement in practice, offering a fresh perspective for exploiting the advantageous features of dendrimers in biomedical applications

    Groundwater Quality and Potential Human Health Risk Assessment for Drinking and Irrigation Purposes: A Case Study in the Semiarid Region of North China

    No full text
    Groundwater is a valuable water source for drinking and irrigation purposes in semiarid regions. Groundwater pollution may affect human health if it is not pretreated and provided for human use. This study investigated the hydrochemical characteristics driving groundwater quality for drinking and irrigation purposes and potential human health risks in the Xinzhou Basin, Shanxi Province, North China. More specifically, we first investigated hydrochemical characteristics using a descriptive statistical analysis method. We then classified the hydrochemical types and analyzed the evolution mechanisms of groundwater using Piper and Gibbs diagrams. Finally, we appraised the groundwater quality for drinking and irrigation purposes using the entropy water quality index (EWQI). We assessed the associated human health risks for different age and sex groups through drinking intake and dermal contact pathways. Overall, we found that (1) Ca-HCO3 and Ca·Mg-HCO3 were the dominant hydrochemical types and were mainly governed by rock weathering and water–rock interactions. (2) Based on the EWQI classifications, 67.74% of the groundwater samples were classified as medium quality and acceptable for drinking purpose. According to the values of sodium adsorption ratio (SAR), residual sodium carbonate (RSC) and soluble sodium percentage (%Na), 90.32% of the samples were suitable for irrigation, while the remaining samples were unfit for irrigation because of the high salinity in the groundwater. (3) Some contaminants in the groundwater, such as NO3−, NO2− and F−, exceeded the standard limits and may cause potential risks to human health. Our work presented in this paper could establish reasonable management strategies for sustainable groundwater quality protection to protect public health

    Dendrimer-based magnetic resonance imaging agents for brain cancer

    No full text
    International audienceBrain cancer is one of the most lethal and difficult to treat cancers because of its physical location and biological barriers. The mainstay of brain cancer treatment is surgical resection, which demands precise imaging for tumor localization and delineation. Thanks to advances in bioima-ging, brain cancer can be detected earlier and resected more reliably. Magnetic resonance imaging (MRI) is the most common and preferred method to delineate brain cancer, and a contrast agent is often required to enhance imaging contrast. Dendrimers, a special family of synthetic macromolecules, constitute a particularly appealing platform for constructing MRI contrast agents by virtue of their well-defined three-dimensional structure, tunable nanosize and abundant surface terminals, which allow the accommodation of high payloads and numerous functionalities. Tuning the dendrimer size, branching and surface composition in conjunction with conjugation of MRI functionalities and targeting moieties can alter the relaxivity for MRI, overcome the blood-brain barrier and enhance tumor-specific targeting, hence improving the imaging quality and safety profile for precise and accurate imaging of brain tumors. This short review highlights the recent progress, opportunities and challenges in developing dendrimer-based MRI contrast agents for brain tumor imaging

    SQSTM1/p62 in intrahepatic cholangiocarcinoma promotes tumor progression via epithelial–mesenchymal transition and mitochondrial function maintenance

    No full text
    Abstract Background SQSTM1/p62 is a selective autophagy receptor that regulates multiple signaling pathways participating in the initiation and progression of tumors. Metastasis is still the main cause for intrahepatic cholangiocarcinoma (ICC)‐associated mortality. Hence, this study aimed to explore the mechanism of p62 promoting the progression of ICC. Methods Western blotting and immunohistochemical analyses were conducted to detect the expression level of protein p62 in ICC tissues and its correlation with prognosis. Subsequently, the loss‐of‐function experiments in vitro and in vivo were performed to define the role of p62 in ICC cell proliferation, invasion, and metastasis. Then, the effect of p62 knockdown on mitochondrial function and mitophagy was evaluated by measuring the oxygen consumption rate, and using immunofluorescence and western blotting analyses. Results The expression of p62 was significantly upregulated in ICC specimens compared with normal tissues. We further illustrated that p62 expression positively correlated with lymph node metastasis and poor prognosis. The loss‐of‐function assays revealed that p62 not only promoted ICC cell proliferation, migration, and invasive capacities in vitro, but also induced lung metastasis in the xenograft mouse model. Mechanistically, high expression of p62‐induced epithelial–mesenchymal transition (EMT) with the upregulation of Snail, vimentin, N‐cadherin, and downregulation of E‐cadherin. Moreover, the autophagy‐dependent function of p62 might play a vital role in maintaining the mitochondrial function of ICC by mitophagy which might further promote EMT. Conclusion These data provided new evidence for the mechanism by which abundant p62 expression promoted ICC progression, suggesting a promising therapeutic target for antimetastatic strategies in patients with ICC

    Dynamic self-assembling supramolecular dendrimer nanosystems as potent antibacterial candidates against drug-resistant bacteria and biofilms

    Get PDF
    International audienceThe alarming and prevailing antibiotic resistance crisis urgently calls for innovative "outside of the box" antibacterial agents, which can differ substantially from conventional antibiotics. In this context, we have established antibacterial candidates based on dynamic supramolecular dendrimer nanosystems selfassembled with amphiphilic dendrimers composed of a long hydrophobic alkyl chain and a small hydrophilic poly(amidoamine) dendron bearing distinct terminal functionalities. Remarkably, the amphiphilic dendrimer with amine terminals exhibited strong antibacterial activity against both Gram-positive and Gram-negative as well as drug-resistant bacteria, and prevented biofilm formation. Multidisciplinary studies combining experimental approaches and computer modelling together demonstrate that the dendrimer interacts and binds via electrostatic interactions with the bacterial membrane, where it becomes enriched and then dynamically self-assembles into supramolecular nanoassemblies for stronger and multivalent interactions. These, in turn, rapidly promote the insertion of the hydrophobic dendrimer tail into the bacterial membrane thereby inducing bacterial cell lysis and constituting powerful antibacterial activity. Our study presents a novel concept for creating nanotechnology-based antibacterial candidates via dynamic self-assembly and offers a new perspective for combatting recalcitrant bacterial infection

    Dendrimer nanosystems for adaptive tumor-assisted drug delivery via extracellular vesicle hijacking

    No full text
    International audienceDrug delivery systems (DDSs) that can overcome tumor heterogeneity and achieve deep tumor penetration are challenging to develop yet in high demand for cancer treatment. We report here a DDS based on self-assembling dendrimer nanomicelles for effective and deep tumor penetration via in situ tumor-secreted extracellular vesicles (EVs), an endogenous transport system that evolves with tumor microenvironment. Upon arrival at a tumor, these dendrimer nanomicelles had their payload repackaged by the cells into EVs, which were further transported and internalized by other cells for delivery “in relay.” Using pancreatic and colorectal cancer-derived 2D, 3D, and xenograft models, we demonstrated that the in situ-generated EVs mediated intercellular delivery, propagating cargo from cell to cell and deep within the tumor. Our study provides a new perspective on exploiting the intrinsic features of tumors alongside dendrimer supramolecular chemistry to develop smart and effective DDSs to overcome tumor heterogeneity and their evolutive nature thereby improving cancer therap

    A self-assembling amphiphilic dendrimer nanotracer for SPECT imaging

    No full text
    International audienceBioimaging has revolutionized modern medicine, and nanotechnology can offer further specific and sensitive imaging. We report here an amphiphilic dendrimer able to self-assemble into supramolecular nanomicelles for effective tumor detection using SPECT radioimaging. This highlights the promising potential of supramolecular dendrimer platforms for biomedical imaging
    corecore