468 research outputs found

    Infinitely many fast homoclinic solutions for some second-order nonautonomous systems

    No full text
    We investigate the existence of infinitely many fast homoclinic solutions for a class of second-order nonautonomous systems. Our main tools are based on the variant fountain theorem. A criterion guaranteeing that the second-order system has infinitely many fast homoclinic solutions is obtained. Recent results from the literature are generalized and significantly improved.Досліджєно існування нескінченної кількості швидких гомоклінічних розв'язків для класу неавтономних систем другого порядку. Наш основний метод базується на модифікації теореми про фонтан. Отримано критерій, що гарантує наявність нескінченної кількості швидких гомоклінічних розв'язків системи другого порядку. Узагальнено та значно покращено нещодавно опубліковані результати

    The Resistance of Ship Web Girders in Collision and Grounding

    Get PDF
    Ship web girders play an important role in ship structure performance during collision and grounding accidents. The behavior of web girders subjected to in-plane concentrated load is investigated by numerical simulation and theoretical analysis in this paper. A numerical simulation based on previous experiment is conducted to give insight to the deformation mechanism of crushing web girders. Some new important deformation characteristics are observed through the simulation results. A new theoretical deformation model is proposed featured with these deformation characteristics, and a simplified analytical method for predicting the instantaneous and mean resistances of crushing web girders is proposed. The proposed method is verified by two previous experiments and a series of numerical simulations. The agreement between the solutions by the proposed method and the experiment results is good. The comparison results between the proposed analytical method and numerical simulation results are satisfactory for most cases. The proposed analytical method will contribute to the establishment of an efficient method for fast and reliable assessment of the outcome of ship accidental collisions and grounding events

    Global Positive Periodic Solutions for Periodic Two-Species Competitive Systems with Multiple Delays and Impulses

    Get PDF
    A set of easily verifiable sufficient conditions are derived to guarantee the existence and the global stability of positive periodic solutions for two-species competitive systems with multiple delays and impulses, by applying some new analysis techniques. This improves and extends a series of the well-known sufficiency theorems in the literature about the problems mentioned previously

    Wireless Transmission of Images With The Assistance of Multi-level Semantic Information

    Full text link
    Semantic-oriented communication has been considered as a promising to boost the bandwidth efficiency by only transmitting the semantics of the data. In this paper, we propose a multi-level semantic aware communication system for wireless image transmission, named MLSC-image, which is based on the deep learning techniques and trained in an end to end manner. In particular, the proposed model includes a multilevel semantic feature extractor, that extracts both the highlevel semantic information, such as the text semantics and the segmentation semantics, and the low-level semantic information, such as local spatial details of the images. We employ a pretrained image caption to capture the text semantics and a pretrained image segmentation model to obtain the segmentation semantics. These high-level and low-level semantic features are then combined and encoded by a joint semantic and channel encoder into symbols to transmit over the physical channel. The numerical results validate the effectiveness and efficiency of the proposed semantic communication system, especially under the limited bandwidth condition, which indicates the advantages of the high-level semantics in the compression of images

    Autophagy Protects the Blood-Brain Barrier Through Regulating the Dynamic of Claudin-5 in Short-Term Starvation

    Get PDF
    The blood-brain barrier (BBB) is essential for the exchange of nutrient and ions to maintain the homeostasis of central nervous system (CNS). BBB dysfunction is commonly associated with the disruption of endothelial tight junctions and excess permeability, which results in various CNS diseases. Therefore, maintaining the structural integrity and proper function of the BBB is essential for the homeostasis and physiological function of the CNS. Here, we showed that serum starvation disrupted the function of endothelial barrier as evidenced by decreased trans-endothelial electrical resistance, increased permeability, and redistribution of tight junction proteins such as Claudin-5 (Cldn5). Further analyses revealed that autophagy was activated and protected the integrity of endothelial barrier by scavenging ROS and inhibiting the redistribution of Cldn5 under starvation, as evidenced by accumulation of autophagic vacuoles and increased expression of LC3II/I, ATG5 and LAMP1. In addition, autophagosome was observed to package and eliminate the aggregated Cldn5 in cytosol as detected by immunoelectron microscopy (IEM) and stimulated emission depletion (STED) microscope. Moreover, Akt-mTOR-p70S6K pathway was found to be involved in the protective autophagy induced by starvation. Our data demonstrated that autophagy played an essential role in maintaining the integrity of endothelial barrier by regulating the localization of Cldn5 under starvation

    Fabrication of (Mn,Co)3O4 Surface Coatings onto Alloy Substrates

    Full text link
    Ferritic stainless steels are promising candidates for IT-SOFC interconnect applications due to their low cost and resistance to oxidation at SOFC operating temperatures. However, several challenges remain, including long term electrical conductivity and surface stability under interconnect exposure conditions and chromia scale evaporation. One means of extending interconnect lifetime and improving performance is to apply a protective coating, such as (Mn,Co)3O4 spinel, to the cathode side of the interconnect. These coatings have proven effective in reducing scale growth kinetics and Cr volatility. This report describes several procedures developed at PNNL for fabricating (Mn,Co)3O4 spinel coatings onto ferritic stainless steels
    corecore