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A set of easily verifiable sufficient conditions are derived to guarantee the existence and the global stability of positive periodic
solutions for two-species competitive systems with multiple delays and impulses, by applying some new analysis techniques. This
improves and extends a series of the well-known sufficiency theorems in the literature about the problems mentioned previously.

1. Introduction

Throughout this paper, we make the following notation and
assumptions:

let 𝜔 > 0 be a constant and

𝐶
𝜔
= {𝑥 | 𝑥 ∈ 𝐶(𝑅, 𝑅), 𝑥(𝑡 + 𝜔) = 𝑥(𝑡)}, with the

norm being defined by |𝑥|
0
= max

𝑡∈[0,𝜔]
|𝑥(𝑡)|;

𝐶
1

𝜔
= {𝑥 | 𝑥 ∈ 𝐶

1

(𝑅, 𝑅), 𝑥(𝑡 + 𝜔) = 𝑥(𝑡)}, with the
norm being defined by ‖𝑥‖ = max

𝑡∈[0,𝜔]
{|𝑥|

0
, |𝑥



|
0
};

𝑃𝐶 = {𝑥 | 𝑥 : 𝑅 → 𝑅
+

, lim
𝑠→ 𝑡

𝑥(𝑠) = 𝑥(𝑡), if
𝑡 ̸= 𝑡

𝑘
, lim

𝑡→ 𝑡
−

𝑘

𝑥(𝑡) = 𝑥(𝑡
𝑘
), lim

𝑡→ 𝑡
+

𝑘

𝑥(𝑡) exists, 𝑘 ∈

𝑍
+

};

𝑃𝐶
1

= {𝑥 | 𝑥 : 𝑅 → 𝑅
+

, 𝑥


∈ 𝑃𝐶};

𝑃𝐶
𝜔
= {𝑥 | 𝑥 ∈ 𝑃𝐶, 𝑥(𝑡 + 𝜔) = 𝑥(𝑡)}, with the norm

being defined by |𝑥|
0
= max

𝑡∈[0,𝜔]
|𝑥(𝑡)|;

𝑃𝐶
1

𝜔
= {𝑥 | 𝑥 ∈ 𝑃𝐶

1

, 𝑥(𝑡 + 𝜔) = 𝑥(𝑡)}, with the norm
being defined by ‖𝑥‖ = max

𝑡∈[0,𝜔]
{|𝑥|

0
, |𝑥



|
0
};

then those spaces are all Banach spaces. We also denote that

𝑓 =

1

𝜔

∫

𝜔

0

𝑓 (𝑡) 𝑑𝑡, 𝑓
𝐿

= min
𝑡∈[0,𝜔]

𝑓 (𝑡) ,

𝑓
𝑀

= max
𝑡∈[0,𝜔]

𝑓 (𝑡) ,

for any 𝑓 ∈ 𝑃𝐶
𝜔
.

(1)

In this paper, we investigate the existence, uniqueness,
and global stability of the positive periodic solution for two
corresponding periodic Lotka-Volterra competitive systems
involving multiple delays and impulses:

𝑥


1
(𝑡) = 𝑥

1
(𝑡) [𝑟

1
(𝑡) − 𝑎

1
(𝑡) 𝑥

1
(𝑡)

+

𝑛

∑

𝑖=1

𝑏
1𝑖
(𝑡) 𝑥

1
(𝑡 − 𝜏

𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝑡) 𝑥

2
(𝑡 − 𝛿

𝑗
(𝑡))

]

]

,
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𝑥


2
(𝑡) = 𝑥

2
(𝑡) [𝑟

2
(𝑡) − 𝑎

2
(𝑡) 𝑥

2
(𝑡)

+

𝑚

∑

𝑗=1

𝑏
2𝑗
(𝑡) 𝑥

2
(𝑡 − 𝜂

𝑗
(𝑡))

−

𝑛

∑

𝑖=1

𝑐
2𝑖
(𝑡) 𝑥

1
(𝑡 − 𝜎

𝑖
(𝑡))] , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥
𝑙
(𝑡) = 𝑥

𝑙
(𝑡
+

) − 𝑥
𝑙
(𝑡) = 𝜃

𝑙𝑘
𝑥
𝑙
(𝑡) ,

𝑙 = 1, 2, 𝑘 = 1, 2, . . . , 𝑡 = 𝑡
𝑘
,

(2)

𝑥


1
(𝑡) = 𝑥

1
(𝑡) [𝑟

1
(𝑡) − 𝑎

1
(𝑡) 𝑥

1
(𝑡)

−

𝑛

∑

𝑖=1

𝑏
1𝑖
(𝑡) 𝑥

1
(𝑡 − 𝜏

𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝑡) 𝑥

2
(𝑡 − 𝛿

𝑗
(𝑡))

]

]

,

𝑥


2
(𝑡) = 𝑥

2
(𝑡) [𝑟

2
(𝑡) − 𝑎

2
(𝑡) 𝑥

2
(𝑡)

−

𝑚

∑

𝑗=1

𝑏
2𝑗
(𝑡) 𝑥

2
(𝑡 − 𝜂

𝑗
(𝑡))

−

𝑛

∑

𝑖=1

𝑐
2𝑖
(𝑡) 𝑥

1
(𝑡 − 𝜎

𝑖
(𝑡))] , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥
𝑙
(𝑡) = 𝑥

𝑙
(𝑡
+

) − 𝑥
𝑙
(𝑡) = 𝜃

𝑙𝑘
𝑥
𝑙
(𝑡) ,

𝑙 = 1, 2, 𝑘 = 1, 2, . . . , 𝑡 = 𝑡
𝑘
,

(3)

with initial conditions

𝑥
𝑙
(𝜉) = 𝜙

𝑙
(𝜉) , 𝑥



𝑙
(𝜉) = 𝜙



𝑙
(𝜉) ,

𝜉 ∈ [−𝜏, 0] , 𝜙
𝑙
(0) > 0,

𝜙
𝑙
∈ 𝐶 ([−𝜏, 0) , 𝑅

+

)⋂𝐶
1

([−𝜏, 0) , 𝑅
+

) , 𝑙 = 1, 2,

(4)

where 𝑎
1
(𝑡), 𝑎

2
(𝑡), 𝑏

1𝑖
(𝑡), 𝑏

2𝑗
(𝑡), 𝑐

1𝑗
(𝑡), and 𝑐

2𝑖
(𝑡) are all in

𝑃𝐶
𝜔
. Also 𝜏

𝑖
(𝑡), 𝛿

𝑗
(𝑡), 𝜂

𝑗
(𝑡), and 𝜎

𝑖
(𝑡) are all in 𝑃𝐶

1

𝜔
with

𝜏
𝑖
(𝑡) > 0, 𝛿

𝑗
(𝑡) > 0, 𝜂

𝑗
(𝑡) > 0, 𝜎

𝑖
(𝑡) > 0, 𝑡 ∈ [0, 𝜔], 𝜏 =

max{𝜏
𝑖
(𝑡), 𝛿

𝑗
(𝑡), 𝜂

𝑗
(𝑡), 𝜎

𝑖
(𝑡)}, 𝜏

𝑖
(𝑡) < 1, 𝛿

𝑗
(𝑡) < 1, 𝜂

𝑗
(𝑡) <

1, 𝜎
𝑖
(𝑡) < 1 (𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚). Furthermore, the

intrinsic growth rates 𝑟
1
(𝑡), 𝑟

2
(𝑡) ∈ 𝑃𝐶

𝜔
are with ∫

𝜔

0

𝑟
𝑙
(𝑡)𝑑𝑡 >

0, (𝑙 = 1, 2). For the ecological justification of (2) and (3) and
similar types refer to [1–10].

In [1], Freedman andWu proposed the following periodic
single-species population growthmodels with periodic delay:

𝑦


(𝑡) = 𝑦 (𝑡) [𝑟 (𝑡) − 𝑎 (𝑡) 𝑦 (𝑡) + 𝑏 (𝑡) 𝑦 (𝑡 − 𝜏 (𝑡))] . (5)

They had assumed that the net birth 𝑟(𝑡), the self-
inhibition rate 𝑎(𝑡), and the delay 𝜏(𝑡) are continuously
differentiable 𝜔-periodic functions, and 𝑟(𝑡) > 0, 𝑎(𝑡) > 0,
𝑏(𝑡) ≥ 0, and 𝜏(𝑡) ≥ 0 for 𝑡 ∈ 𝑅. The positive feedback
term 𝑏(𝑡)𝑦(𝑡 − 𝜏(𝑡)) in the average growth rate of species
has a positive time delay (the sign of the time delay term is
positive), which is a delay due to gestation (see [1, 2]). They
had established sufficient conditions which guarantee that
system (5) has a positive periodic solution which is globally
asymptotically stable.

In [3], Fan and Wang investigated the following periodic
single-species population growthmodels with periodic delay:

𝑦


(𝑡) = 𝑦 (𝑡) [𝑟 (𝑡) − 𝑎 (𝑡) 𝑦 (𝑡) − 𝑏 (𝑡) 𝑦 (𝑡 − 𝜏 (𝑡))] . (6)

They had assumed that the net birth 𝑟(𝑡), the self-
inhibition rate 𝑎(𝑡), and the delay 𝜏(𝑡) are continuously
differentiable 𝜔-periodic functions, and 𝑟(𝑡) > 0, 𝑎(𝑡) > 0,
𝑏(𝑡) ≥ 0, and 𝜏(𝑡) ≥ 0 for 𝑡 ∈ 𝑅. The negative feedback
term −𝑏(𝑡)𝑦(𝑡 − 𝜏(𝑡)) in the average growth rate of species
has a negative time delay (the sign of the time delay term
is negative), which can be regarded as the deleterious effect
of time delay on a species growth rate (see [4–6]). They
had derived sufficient conditions for the existence and global
attractivity of positive periodic solutions of system (6). But
the discussion of global attractivity is only confined to the
special case when the periodic delay is constant.

Alvarez and Lazer [7] and Ahmad [8] have studied the
following two-species competitive system without delay:

𝑦


1
(𝑡) = 𝑦

1
(𝑡) [𝑟

1
(𝑡) − 𝑎

1
(𝑡) 𝑦

1
(𝑡) − 𝑐

1
(𝑡) 𝑦

2
(𝑡)] ,

𝑦


2
(𝑡) = 𝑦

2
(𝑡) [𝑟

2
(𝑡) − 𝑎

2
(𝑡) 𝑦

2
(𝑡) − 𝑐

2
(𝑡) 𝑦

1
(𝑡)] .

(7)

They had derived sufficient conditions for the existence
and global attractivity of positive periodic solutions of system
(7) by using differential inequalities and topological degree,
respectively. In fact, in many practical situations the time
delay occurs so often. A more realistic model should include
some of the past states of the system. Therefore, in [10], Liu
et al. considered two corresponding periodic Lotka-Volterra
competitive systems involving multiple delays:

𝑦


1
(𝑡) = 𝑦

1
(𝑡) [𝑟

1
(𝑡) − 𝑎

1
(𝑡) 𝑦

1
(𝑡) +

𝑛

∑

𝑖=1

𝑏
1𝑖
(𝑡) 𝑦

1
(𝑡 − 𝜏

𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝑡) 𝑦

2
(𝑡 − 𝜌

𝑗
(𝑡))

]

]

,

𝑦


2
(𝑡) = 𝑦

2
(𝑡)

[

[

𝑟
2
(𝑡) − 𝑎

2
(𝑡) 𝑦

2
(𝑡) +

𝑚

∑

𝑗=1

𝑏
2𝑗
(𝑡) 𝑦

2
(𝑡 − 𝜂

𝑗
(𝑡))

−

𝑛

∑

𝑖=1

𝑐
2𝑖
(𝑡) 𝑦

1
(𝑡 − 𝜎

𝑖
(𝑡))] ,

(8)
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𝑦


1
(𝑡) = 𝑦

1
(𝑡) [𝑟

1
(𝑡) − 𝑎

1
(𝑡) 𝑦

1
(𝑡) −

𝑛

∑

𝑖=1

𝑏
1𝑖
(𝑡) 𝑦

1
(𝑡 − 𝜏

𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝑡) 𝑦

2
(𝑡 − 𝜌

𝑗
(𝑡))

]

]

,

𝑦


2
(𝑡) = 𝑦

2
(𝑡)

[

[

𝑟
2
(𝑡) − 𝑎

2
(𝑡) 𝑦

2
(𝑡) −

𝑚

∑

𝑗=1

𝑏
2𝑗
(𝑡) 𝑦

2
(𝑡 − 𝜂

𝑗
(𝑡))

−

𝑛

∑

𝑖=1

𝑐
2𝑖
(𝑡) 𝑦

1
(𝑡 − 𝜎

𝑖
(𝑡))] ,

(9)

where 𝑏
1𝑖
(𝑡), 𝑏

2𝑗
(𝑡) ∈ 𝐶(𝑅, [0, +∞)), 𝑎

1
(𝑡), 𝑎

2
(𝑡), 𝑐

1𝑗
(𝑡),

𝑐
2𝑖
(𝑡) ∈ 𝐶(𝑅, [0, +∞)), 𝜏

𝑖
(𝑡), 𝜌

𝑗
(𝑡), 𝜂

𝑗
(𝑡), and 𝜎

𝑖
(𝑡) ∈

𝐶
1

(𝑅, [0, +∞)) (𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚) are 𝜔-
periodic functions. Here, the intrinsic growth rates 𝑟

𝑘
(𝑡) ∈

𝐶(𝑅, 𝑅) are 𝜔-periodic functions with ∫

𝜔

0

𝑟
𝑘
(𝑡)𝑑𝑡 > 0 (𝑘 =

1, 2). They had derived the same criteria for the existence and
globally asymptotic stability of positive periodic solutions
of the above two competitive systems by using Gaines and
Mawhin’s continuation theoremof coincidence degree theory
and by means of a suitable Lyapunov functional.

However, the ecological system is often deeply perturbed
by human exploitation activities such as planting, harvesting,
and so on, which makes it unsuitable to be considered
continually. For having a more accurate description of such
a system, we need to consider the impulsive differential
equations. The theory of impulsive differential equations not
only is richer than the corresponding theory of differential
equations without impulses, but also represents a more natu-
ral framework formathematicalmodeling ofmany real world
phenomena [11–13]. Recently, some impulsive equations have
been recently introduced in population dynamics in relation
to population ecology [14–26] and chemotherapeutic treat-
ment [27, 28]. However, to the best of the authors’ knowledge,
to this day, few scholars have done works on the existence,
uniqueness, and global stability of positive periodic solution
of (2) and (4). One could easily see that systems (5)–(9) are
all special cases of systems (2) and (3). Therefore, we propose
and study the systems (2) and (3) in this paper.

For the sake of generality and convenience, we always
make the following fundamental assumptions.

(𝐻
1
) 𝑎

1
(𝑡), 𝑎

2
(𝑡), 𝑏

1𝑖
(𝑡), 𝑏

2𝑗
(𝑡), 𝑐

1𝑗
(𝑡), 𝑐

2𝑖
(𝑡), 𝑟

1
(𝑡), and

𝑟
2
(𝑡) are all in𝑃𝐶

𝜔
; 𝜏

𝑖
(𝑡), 𝛿

𝑗
(𝑡), 𝜂

𝑗
(𝑡), and𝜎

𝑖
(𝑡) are all in

𝑃𝐶
1

𝜔
with 𝜏

𝑖
(𝑡) > 0, 𝛿

𝑗
(𝑡) > 0, 𝜂

𝑗
(𝑡) > 0, 𝜎

𝑖
(𝑡) > 0, 𝑡 ∈

[0, 𝜔], 𝜏 = max{𝜏
𝑖
(𝑡), 𝛿

𝑗
(𝑡), 𝜂

𝑗
(𝑡), 𝜎

𝑖
(𝑡)}, 𝜏



𝑖
(𝑡) < 1,

𝛿


𝑗
(𝑡) < 1, 𝜂

𝑗
(𝑡) < 1, and 𝜎



𝑖
(𝑡) < 1 (𝑖 = 1, 2, . . . , 𝑛; 𝑗 =

1, 2, . . . , 𝑚).
(𝐻

2
) [𝑡

𝑘
]
𝑘∈𝑁

satisfies 0 < 𝑡
1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ ,

lim
𝑘→∞

𝑡
𝑘
= +∞, 𝜃

𝑙𝑘
(𝑖 = 1, 2) are constants, and

there exists a positive integer 𝑞 > 0 such that 𝑡
𝑘+𝑞

=

𝑡
𝑘
+ 𝜔, 𝜃

𝑙(𝑘+𝑞)
= 𝜃

𝑙𝑘
. Without loss of generality, we can

assume that 𝑡
𝑘

̸= 0 and [0, 𝜔]∩{𝑡
𝑘
} = 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑚
, and

then 𝑞 = 𝑚.

(𝐻
3
) {𝜃

𝑙𝑘
} is a real sequence such that 𝜃

𝑙𝑘
+ 1 > 0,

∏
0<𝑡
𝑘

<𝑡
(1 + 𝜃

𝑙𝑘
), 𝑙 = 1, 2 is an 𝜔-periodic function.

Definition 1. A function 𝑥
𝑙
: 𝑅 → (0, +∞), 𝑙 = 1, 2 is

said to be a positive solution of (2) and (3), if the following
conditions are satisfied:

(a) 𝑥
𝑙
(𝑡) is absolutely continuous on each (𝑡

𝑘
, 𝑡
𝑘+1

);

(b) for each 𝑘 ∈ 𝑍
+
, 𝑥

𝑙
(𝑡
+

𝑘
) and 𝑥

𝑙
(𝑡
−

𝑘
) exist, and 𝑥

𝑙
(𝑡
−

𝑘
) =

𝑥
𝑙
(𝑡
𝑘
);

(c) 𝑥
𝑙
(𝑡) satisfies the first equation of (2) and (3) for

almost everywhere (for short a.e.) in [0,∞] \ {𝑡
𝑘
} and

satisfies 𝑥
𝑙
(𝑡
+

𝑘
) = (1 + 𝜃

𝑙𝑘
)𝑥

𝑙
(𝑡
𝑘
) for 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
=

{1, 2, . . .}.

Under the above hypotheses (𝐻
1
)–(𝐻

3
), we consider the

following nonimpulsive delay differential equation:

𝑦


1
(𝑡) = 𝑦

1
(𝑡) [𝑟

1
(𝑡) − 𝐴

1
(𝑡) 𝑦

1
(𝑡)

+

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑦

1
(𝑡 − 𝜏

𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑦

2
(𝑡 − 𝛿

𝑗
(𝑡))

]

]

,

𝑦


2
(𝑡) = 𝑥

2
(𝑡) [𝑟

2
(𝑡) − 𝐴

2
(𝑡) 𝑦

2
(𝑡)

+

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) 𝑦

2
(𝑡 − 𝜂

𝑗
(𝑡))

−

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) 𝑦

1
(𝑡 − 𝜎

𝑖
(𝑡))] ,

(10)

𝑦


1
(𝑡) = 𝑦

1
(𝑡) [𝑟

1
(𝑡) − 𝐴

1
(𝑡) 𝑦

1
(𝑡)

−

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑦

1
(𝑡 − 𝜏

𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑦

2
(𝑡 − 𝛿

𝑗
(𝑡))

]

]

,

𝑦


2
(𝑡) = 𝑥

2
(𝑡) [𝑟

2
(𝑡) − 𝐴

2
(𝑡) 𝑦

2
(𝑡)

−

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) 𝑦

2
(𝑡 − 𝜂

𝑗
(𝑡))

−

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) 𝑦

1
(𝑡 − 𝜎

𝑖
(𝑡))] ,

(11)
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with the initial conditions

𝑦
𝑙
(𝑡) = 𝜑

𝑙
(𝜉) , 𝜉 ∈ [−𝜏, 0] ,

𝜏 = max {𝜏
𝑖
(𝑡) , 𝛿

𝑗
(𝑡) , 𝜂

𝑗
(𝑡) , 𝜎

𝑖
(𝑡)} ,

𝜑
𝑙
(0) > 0, 𝜑

𝑙
∈ 𝐶 ([−𝜏, 0] , 𝑅

+
) ,

(12)

where

𝐴
𝑙
(𝑡) = 𝑎

𝑙
(𝑡) ∏

0<𝑡
𝑘

<𝑡

(1 + 𝜃
𝑙𝑘
) ,

𝐵
1𝑖
(𝑡) = 𝑏

1𝑖
(𝑡) ∏

0<𝑡
𝑘

<𝑡−𝜏
𝑖

(𝑡)

(1 + 𝜃
1𝑘
) ,

𝐵
2𝑗
(𝑡) = 𝑏

2𝑗
(𝑡) ∏

0<𝑡
𝑘

<𝑡−𝜂
𝑗

(𝑡)

(1 + 𝜃
2𝑘
) ,

𝐶
1𝑗
(𝑡) = 𝑐

1𝑗
(𝑡) ∏

0<𝑡
𝑘

<𝑡−𝜌
𝑗

(𝑡)

(1 + 𝜃
2𝑘
) ,

𝐶
2𝑖
(𝑡) = 𝑐

2𝑖
(𝑡) ∏

0<𝑡
𝑘

<𝑡−𝜎
𝑖

(𝑡)

(1 + 𝜃
1𝑘
) ,

𝑙 = 1, 2; 𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚.

(13)

The following lemmas will be used in the proofs of our
results. The proof of Lemma 2 is similar to that of Theorem 1
in [25].

Lemma 2. Suppose that (𝐻
1
)–(𝐻

3
) hold; then

(1) if 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦

2
(𝑡))

𝑇 is a solution of (10)–(12) on
[−𝜏, +∞), then 𝑥

𝑙
(𝑡) = ∏

0<𝑡
𝑘

<𝑡
(1 + 𝜃

𝑙𝑘
)𝑦

𝑙
(𝑡) (𝑙 = 1, 2)

is a solution of (2)–(4) on [−𝜏, +∞);

(2) if 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡))

𝑇 is a solution of (2)–(4) on
[−𝜏, +∞), then 𝑦

𝑙
(𝑡) = ∏

0<𝑡
𝑘

<𝑡
(1 + 𝜃

𝑙𝑘
)
−1

𝑥
𝑙
(𝑡) (𝑙 =

1, 2) is a solution of (10)–(12) on [−𝜏, +∞).

Proof. (1) It is easy to see that 𝑥
𝑙
(𝑡) = ∏

0<𝑡
𝑘

<𝑡
(1+𝜃

𝑙𝑘
)𝑦

𝑙
(𝑡) (𝑙 =

1, 2) is absolutely continuous on every interval (𝑡
𝑘
, 𝑡
𝑘+1

],
𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . ., and

𝑥


1
(𝑡) − 𝑥

1
(𝑡) [𝑟

1
(𝑡) − 𝑎

1
(𝑡) 𝑥

1
(𝑡)

+

𝑛

∑

𝑖=1

𝑏
1𝑖
(𝑡) 𝑥

1
(𝑡 − 𝜏

𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝑡) 𝑥

2
(𝑡 − 𝛿

𝑗
(𝑡))

]

]

= ∏

0<𝑡
𝑘

<𝑡

(1 + 𝜃
1𝑘
) 𝑦



1
(𝑡) − ∏

0<𝑡
𝑘

<𝑡

(1 + 𝜃
1𝑘
) 𝑦

1
(𝑡)

× [𝑟
1
(𝑡) − 𝑎

1
(𝑡) ∏

0<𝑡
𝑘

<𝑡

(1 + 𝜃
1𝑘
) 𝑦

1
(𝑡)

+

𝑛

∑

𝑖=1

𝑏
1𝑖
(𝑡) ∏

0<𝑡
𝑘

<𝑡−𝜏
𝑖

(𝑡)

(1 + 𝜃
1𝑘
) 𝑦

1
(𝑡 − 𝜏

𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝑡) ∏

0<𝑡
𝑘

<𝑡−𝜌
𝑗

(𝑡)

(1 + 𝜃
2𝑘
)

× 𝑦
2
(𝑡 − 𝛿

𝑗
(𝑡))

]

]

= ∏

0<𝑡
𝑘

<𝑡

(1 + 𝜃
1𝑘
) (𝑦



1
(𝑡) − 𝑦

1
(𝑡))

× [𝑟
1
(𝑡) − 𝐴

1
(𝑡) 𝑦

1
(𝑡) −

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑦

1
(𝑡 − 𝜏

𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑦

2
(𝑡 − 𝜌

𝑗
(𝑡))

]

]

= 0.

(14)

On the other hand, for any 𝑡 = 𝑡
𝑘
, 𝑘 = 1, 2, . . .,

𝑥
1
(𝑡
+

𝑘
) = lim

𝑡→ 𝑡
+

𝑘

∏

0<𝑡
𝑗

<𝑡

(1 + 𝜃
1𝑘
) 𝑦

1
(𝑡)

= ∏

0<𝑡
𝑗

≤𝑡
𝑘

(1 + 𝜃
1𝑘
) 𝑦

1
(𝑡
𝑘
) ,

𝑥
1
(𝑡
𝑘
) = ∏

0<𝑡
𝑗

<𝑡
𝑘

(1 + 𝜃
1𝑘
) 𝑦

1
(𝑡
𝑘
) ;

(15)

thus

Δ𝑥
1
(𝑡
+

𝑘
) = (1 + 𝜃

1𝑘
) 𝑦

1
(𝑡
𝑘
) , (16)

which implies that 𝑥
1
(𝑡) is a solution of (2); similarly, we

can prove that 𝑥
2
(𝑡) is also a solution of (3). Therefore, 𝑥

𝑙
(𝑡),

𝑙 = 1, 2 are solutions of (2)–(4) on [−𝜏, +∞). Similarly, if
𝑦(𝑡) = (𝑦

1
(𝑡), 𝑦

2
(𝑡))

𝑇 is a solution of (10)–(12) on [−𝜏, +∞),
we can prove that 𝑥

𝑙
(𝑡) (𝑙 = 1, 2) are solutions of (2)–(4) on

[−𝜏, +∞).
(2) Since 𝑥

𝑙
(𝑡) = ∏

0<𝑡
𝑘

<𝑡
(1 + 𝜃

𝑙𝑘
)𝑦

𝑙
(𝑡) (𝑙 = 1, 2) is

absolutely continuous on every interval (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑡 ̸= 𝑡
𝑘
, 𝑘 =

1, 2, . . ., and in view of (15), it follows that for any 𝑘 = 1, 2, . . .,

𝑦
1
(𝑡
+

𝑘
) = ∏

0<𝑡
𝑗

≤𝑡
𝑘

(1 + 𝜃
1𝑘
)
−1

𝑥
1
(𝑡
+

𝑘
)

= ∏

0<𝑡
𝑗

<𝑡
𝑘

(1 + 𝜃
1𝑘
)
−1

𝑥
1
(𝑡
𝑘
) = 𝑦

1
(𝑡
𝑘
) ,
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𝑦
1
(𝑡
−

𝑘
) = ∏

0<𝑡
𝑗

<𝑡
𝑘

(1 + 𝜃
1𝑘
)
−1

𝑥
1
(𝑡
−

𝑘
)

= ∏

0<𝑡
𝑗

≤𝑡
−

𝑘

(1 + 𝜃
1𝑘
)
−1

𝑥
1
(𝑡
−

𝑘
) = 𝑦

1
(𝑡
𝑘
) ,

(17)

which implies that 𝑦
1
(𝑡) is continuous on [−𝜏, +∞). It is easy

to prove that 𝑦
1
(𝑡) is absolutely continuous on [−𝜏, +∞).

Similarly, we can prove that 𝑦
2
(𝑡) is absolutely continuous

on [−𝜏, +∞). Similar to the proof of (1), we can check that
𝑦
𝑙
(𝑡) = ∏

0<𝑡
𝑘

<𝑡
(1 + 𝜃

𝑙𝑘
)
−1

𝑥
𝑙
(𝑡) (𝑙 = 1, 2) are solutions of (10)–

(12) on [−𝜏, +∞). If 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡))

𝑇 is a solution of
(2)–(4) on [−𝜏, +∞) by the same method, we can prove that
𝑦
𝑙
(𝑡) = ∏

0<𝑡
𝑘

<𝑡
(1 + 𝜃

𝑙𝑘
)
−1

𝑥
𝑙
(𝑡) (𝑙 = 1, 2) are solutions of (10)–

(12) on [−𝜏, +∞). The proof of Lemma 2 is completed.

From Lemma 2, if we want to discuss the existence and
global asymptotic stability of positive periodic solutions of
systems (2)–(4), we only discuss the existence of the existence
and global asymptotic stability of positive periodic solutions
of systems (10)–(12).

The organization of this paper is as follows. In Section 2,
we introduce several useful definitions and lemmas. In
Section 3, first, we study the existence of at least one periodic
solution of systems (2)–(4) by using continuation theorem
proposed by Gaines and Mawhin (see [9]). Second, we
investigate the global asymptotic stability of positive peri-
odic solutions of the above systems by using the method
of Lyapunov functional. As applications in Section 4, we
study some particular cases of systems (2)–(4) which have
been investigated extensively in the references mentioned
previously.

2. Preliminaries

In this section, we will introduce some concepts and some
important lemmas which are useful for the next section.

Let𝑋,𝑍 be two real Banach spaces, let 𝐿 : Dom𝐿 ⊂ 𝑋 →

𝑍 be a linear mapping, and let𝑁 : 𝑋 → 𝑍 be a continuous
mapping. The mapping 𝐿 will be called a Fredholm mapping
of index zero if dimKer𝐿 = condimIm𝐿 < +∞ and Im 𝐿 is
closed in 𝑍. If 𝐿 is a Fredholm mapping of index zero and
there exist continuous projectors 𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑍 →

𝑍 such that Im𝑃 = Ker 𝐿, Ker𝑄 = Im 𝐿 = Im(𝐼 − 𝑄), it
follows that 𝐿|Dom𝐿∩Ker𝑃 : (𝐼 − 𝑃)𝑋 → Im 𝐿 is invertible; we
denote the inverse of thatmap by𝐾

𝑝
. IfΩ is an open bounded

subset of𝑋, the mapping𝑁 will be called 𝐿-compact onΩ if
𝑄𝑁(Ω) is bounded and 𝐾

𝑝
(𝐼 − 𝑄)𝑁 : Ω → 𝑋 is compact.

Since Im𝑄 is isomorphic to Ker 𝐿, there exist isomorphisms
𝐽 : Im𝑄 → Ker 𝐿. Let 𝑃𝐶

𝜔
denote the space of 𝜔-periodic

functions Ψ : 𝐽 → 𝑅 which are continuous for 𝑡 ̸= 𝑡
𝑘
, are

continuous from the left for 𝑡 ∈ 𝑅, and have discontinuities
of the first kind at point 𝑡 = 𝑡

𝑘
. We also denote that 𝑃𝐶1

𝜔
=

{Ψ ∈ 𝑃𝐶
𝜔
: Ψ



∈ 𝑃𝐶
𝜔
}.

Definition 3 (see [11]). The set 𝐹 ∈ 𝑃𝐶
𝜔
is said to be

quasiequicontinuous in [0, 𝜔] if for any 𝜖 > 0 there exists

𝛿 > 0 such that if 𝑥 ∈ 𝐹, 𝑘 ∈ 𝑁
+, 𝑡

1
, 𝑡

2
∈ (𝑡

𝑘−1
, 𝑡
𝑘
) ∩ [0, 𝜔],

and |𝑡
1
− 𝑡

2
| < 𝛿, then |𝑥(𝑡

1
) − 𝑥(𝑡

2
)| < 𝜖.

Definition 4. Let 𝑥∗(𝑡) = (𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇 be a strictly positive
periodic solution of (2)–(4). One says that 𝑥∗(𝑡) is globally
attractive if any other solution 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡))

𝑇 of (2)–
(4) has the property lim

𝑡→+∞
|𝑥

∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)| = 0, 𝑖 = 1, 2.

Lemma 5. The region 𝑅
2

+
= {(𝑥

1
, 𝑥

2
) : 𝑥

1
(0) > 0, 𝑥

2
(0) > 0}

is the positive invariable region of the systems (2)–(4).

Proof. By the definition of 𝑥
𝑙
(𝑡) (𝑙 = 1, 2) we have 𝑥

𝑙
(0) > 0.

In view of having

𝑥
1
(𝑡) = 𝑥

1
(0) exp{∫

𝑡

0

[𝑟
1
(𝜉) − 𝑎

1
(𝜉) 𝑥

1
(𝜉)

+

𝑛

∑

𝑖=1

𝑏
1𝑖
(𝜉) 𝑥

1
(𝜉 − 𝜏

𝑖
(𝜉))

−

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝜉) 𝑥

2
(𝜉 − 𝛿

𝑗
(𝜉))

]

]

𝑑𝜉

}

}

}

,

𝑡 ∈ [0, 𝑡
1
] ,

𝑥
1
(𝑡) = 𝑥

1
(𝑡
𝑘
) exp{∫

𝑡

0

[𝑟
1
(𝜉) − 𝑎

1
(𝜉) 𝑥

1
(𝜉)

+

𝑛

∑

𝑖=1

𝑏
1𝑖
(𝜉) 𝑥

1
(𝜉 − 𝜏

𝑖
(𝜉))

−

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝜉) 𝑥

2
(𝜉 − 𝛿

𝑗
(𝜉))

]

]

𝑑𝜉

}

}

}

,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] ,

𝑥
1
(𝑡
+

𝑘
) = (1 + 𝜃

1𝑘
) 𝑥

1
(𝑡
𝑘
) > 0, 𝑘 ∈ 𝑁;

𝑥
2
(𝑡) = 𝑥

2
(0) exp

{

{

{

∫

𝑡

0

[

[

𝑟
2
(𝜉) − 𝑎

2
(𝜉) 𝑥

2
(𝜉)

+

𝑚

∑

𝑗=1

𝑏
2𝑗
(𝜉) 𝑥

2
(𝜉 − 𝜂

𝑗
(𝜉))

−

𝑛

∑

𝑖=1

𝑐
2𝑖
(𝜉) 𝑥

1
(𝜉 − 𝜎

𝑖
(𝜉))] 𝑑𝜉} ,

𝑡 ∈ [0, 𝑡
1
] ,

𝑥
2
(𝑡) = 𝑥

2
(𝑡
𝑘
) exp

{

{

{

∫

𝑡

0

[

[

𝑟
2
(𝜉) − 𝑎

2
(𝜉) 𝑥

2
(𝜉)

+

𝑚

∑

𝑗=1

𝑏
2𝑗
(𝜉) 𝑥

2
(𝜉 − 𝜂

𝑗
(𝜉))

−

𝑛

∑

𝑖=1

𝑐
2𝑖
(𝜉) 𝑥

1
(𝜉 − 𝜎

𝑖
(𝜉))] 𝑑𝜉} ,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] ,



6 Abstract and Applied Analysis

𝑥
2
(𝑡
+

𝑘
) = (1 + 𝜃

2𝑘
) 𝑥

2
(𝑡
𝑘
) > 0, 𝑘 ∈ 𝑁,

(18)

𝑥
1
(𝑡) = 𝑥

1
(0) exp{∫

𝑡

0

[𝑟
1
(𝜉) − 𝑎

1
(𝜉) 𝑥

1
(𝜉)

−

𝑛

∑

𝑖=1

𝑏
1𝑖
(𝜉) 𝑥

1
(𝜉 − 𝜏

𝑖
(𝜉))

−

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝜉) 𝑥

2
(𝜉 − 𝛿

𝑗
(𝜉))

]

]

𝑑𝜉

}

}

}

,

𝑡 ∈ [0, 𝑡
1
] ,

𝑥
1
(𝑡) = 𝑥

1
(𝑡
𝑘
) exp{∫

𝑡

0

[𝑟
1
(𝜉) − 𝑎

1
(𝜉) 𝑥

1
(𝜉)

−

𝑛

∑

𝑖=1

𝑏
1𝑖
(𝜉) 𝑥

1
(𝜉 − 𝜏

𝑖
(𝜉))

−

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝜉) 𝑥

2
(𝜉 − 𝛿

𝑗
(𝜉))

]

]

𝑑𝜉

}

}

}

,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] ,

𝑥
1
(𝑡
+

𝑘
) = (1 + 𝜃

1𝑘
) 𝑥

1
(𝑡
𝑘
) > 0, 𝑘 ∈ 𝑁;

𝑥
2
(𝑡) = 𝑥

2
(0) exp{∫

𝑡

0

[𝑟
2
(𝜉) − 𝑎

2
(𝜉) 𝑥

2
(𝜉)

−

𝑚

∑

𝑗=1

𝑏
2𝑗
(𝜉) 𝑥

2
(𝜉 − 𝜂

𝑗
(𝜉))

−

𝑛

∑

𝑖=1

𝑐
2𝑖
(𝜉) 𝑥

1
(𝜉 − 𝜎

𝑖
(𝜉))] 𝑑𝜉} ,

𝑡 ∈ [0, 𝑡
1
] ,

𝑥
2
(𝑡) = 𝑥

2
(𝑡
𝑘
) exp{∫

𝑡

0

[𝑟
2
(𝜉) − 𝑎

2
(𝜉) 𝑥

2
(𝜉)

−

𝑚

∑

𝑗=1

𝑏
2𝑗
(𝜉) 𝑥

2
(𝜉 − 𝜂

𝑗
(𝜉))

−

𝑛

∑

𝑖=1

𝑐
2𝑖
(𝜉) 𝑥

1
(𝜉 − 𝜎

𝑖
(𝜉))] 𝑑𝜉} ,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] ,

𝑥
2
(𝑡
+

𝑘
) = (1 + 𝜃

2𝑘
) 𝑥

2
(𝑡
𝑘
) > 0, 𝑘 ∈ 𝑁.

(19)

Then the solution of (2)–(4) is positive.Theproof of Lemma 5
is completed.

Lemma 6 (see [19, 29]). Suppose that 𝜎 ∈ 𝐶
1

𝜔
and 𝜎



(𝑡) < 1,
𝑡 ∈ [0, 𝜔]. Then the function 𝑡 − 𝜎(𝑡) has a unique inverse 𝜇(𝑡)
satisfying 𝜇 ∈ 𝐶(𝑅, 𝑅) with 𝜇(𝑎 + 𝜔) = 𝜇(𝑎) + 𝜔 ∀𝑎 ∈ 𝑅, and
if 𝑔 ∈ 𝑃𝐶

𝜔
, 𝜏



(𝑡) < 1, 𝑡 ∈ [0, 𝜔], then 𝑔(𝜇(𝑡)) ∈ 𝑃𝐶
𝜔
.

Proof. Since 𝜎(𝑡) < 1, 𝑡 ∈ [0, 𝜔], and 𝑡 − 𝜎(𝑡) is continuous
on 𝑅, it follows that 𝑡 − 𝜎(𝑡) has a unique inverse function
𝜇(𝑡) ∈ 𝐶(𝑅, 𝑅) on 𝑅. Hence, it suffices to show that 𝜇(𝑎 +

𝜔) = 𝜇(𝑎) + 𝜔, ∀𝑎 ∈ 𝑅. For any 𝑎 ∈ 𝑅, by the condition
𝜎


(𝑡) < 1, one can find that 𝑡 − 𝜎(𝑡) = 𝑎 exists as a unique
solution 𝑡

0
and 𝑡 − 𝜎(𝑡) = 𝑎 + 𝜔 exists as a unique solution

𝑡
1
; that is, 𝑡

0
− 𝜎(𝑡

0
) = 𝑎 and 𝑡

1
− 𝜎(𝑡

1
) = 𝑎 + 𝜔; that is,

𝜇(𝑎) = 𝑡
0
= 𝜎(𝑡

0
) + 𝑎 and 𝜇(𝑎 + 𝜔) = 𝑡

1
.

As

𝑎 + 𝜔 + 𝜎 (𝑡
0
) − 𝜎 (𝑎 + 𝜔 + 𝜎 (𝑡

0
))

= 𝑎 + 𝜔 + 𝜎 (𝑡
0
) − 𝜎 (𝑎 + 𝜎 (𝑡

0
))

= 𝑎 + 𝜔 + 𝜎 (𝑡
0
) − 𝜎 (𝑡

0
) = 𝑎 + 𝜔,

(20)

it follows that 𝑡
1
= 𝑎 + 𝜔 + 𝜎(𝑡

0
). Since 𝜇(𝑎 + 𝜔) = 𝑡

1
, we have

𝜇(𝑎+𝜔) = 𝑡
1
= 𝑎+𝜔+𝜎(𝑡

0
) and 𝜇(𝑎+𝜔) = 𝑡

1
= 𝜇(𝑎)+𝜔. We

can easily obtain that if 𝑔 ∈ 𝑃𝐶
𝜔
, 𝜏(𝑡) < 1, 𝑡 ∈ [0, 𝜔], then

𝑔(𝜇(𝑡 + 𝜔)) = 𝑔(𝜇(𝑡) + 𝜔) = 𝑔(𝜇(𝑡)), 𝑡 ∈ 𝑅, where 𝜇(𝑡) is the
unique inverse function of 𝑡 − 𝜏(𝑡), which together with 𝜇 ∈

𝐶(𝑅, 𝑅) implies that 𝑔(𝜇(𝑡)) ∈ 𝑃𝐶
𝜔
. The proof of Lemma 6 is

completed.

Lemma 7 (see [9]). Let 𝑋 and 𝑍 be two Banach spaces, and
let 𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑍 be a Fredholm operator with index
zero. Ω ⊂ 𝑋 is an open bounded set, and let 𝑁 : Ω → 𝑍 be
L-compact on Ω. Suppose that

(a) 𝐿𝑥 ̸= 𝜆𝑁𝑥 for each 𝜆 ∈ (0, 1) and 𝑥 ∈ 𝜕Ω ∩ Dom𝐿;

(b) 𝑄𝑁𝑥 ̸= 0 for each 𝑥 ∈ 𝜕Ω ∩ ker 𝐿;

(c) deg{𝐽𝑄𝑁,Ω ∩ Ker 𝐿, 0} ̸= 0.

Then, equation 𝐿𝑥 = 𝑁𝑥 has at least one solution lying in
Dom𝐿 ∩ Ω.

Lemma 8 (see [11]). The set 𝐹 ⊂ 𝑃𝐶
𝜔
is relatively compact if

only if

(1) 𝐹 is bounded, that is, ‖𝑥‖ ≤ 𝑀, for each 𝑥, and some
𝑀 > 0;

(2) 𝐹 is quasiequicontinuous in [0, 𝜔].

Lemma 9 (see [30]). Assume that 𝑓(𝑡), 𝑔(𝑡) are continuous
nonnegative functions defined on the interval [𝛼, 𝛽]; then there
exists 𝜉 ∈ [𝛼, 𝛽] such that ∫𝛽

𝛼

𝑓(𝑡)𝑔(𝑡)𝑑𝑡 = 𝑓(𝜉) ∫

𝛽

𝛼

𝑔(𝑡)𝑑𝑡.

Lemma 10 (see [20, 31]). Suppose that 𝜙(𝑡) is a differently
continuous 𝜔-periodic function on 𝑅 with (𝜔 > 0); then, for
any 𝑡∗ ∈ 𝑅, the following inequality holds:

max
𝑡∈[𝑡
∗

,𝑡
∗

+𝜔]

Φ (𝑡) ≤




Φ (𝑡

∗

)




+

1

2

[∫

𝜔

0






Φ



(𝑡)






𝑑𝑡] . (21)
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Lemma 11 (see Barbalat’s Lemma [32]). Let𝑓(𝑡) be a nonneg-
ative function defined on [0, +∞) such that 𝑓(𝑡) is integrable
and uniformly continuous on [0, +∞); then lim

𝑡→+∞
𝑓(𝑡) = 0.

In the following section, we only discuss the existence and
global asymptotic stability of positive periodic solutions of
systems (10)–(12).

3. Existence and Global Asymptotic Stability

Since 𝜏
𝑖
(𝑡) < 1, 𝛿

𝑗
(𝑡) < 1, 𝜂

𝑗
(𝑡) < 1, 𝜎

𝑖
(𝑡) < 1, 𝑡 ∈ [0, 𝜔], by

Lemma 6, we see that all 𝑡−𝜏
𝑖
(𝑡) have their inverse functions.

Throughout the following part, we set 𝛼
𝑖
(𝑡), 𝛽

𝑖
(𝑡), 𝜇

𝑗
(𝑡), and

]
𝑗
(𝑡) to represent the inverse function of 𝑡−𝜏

𝑖
(𝑡), 𝑡−𝜎

𝑖
(𝑡), 𝑡−

𝛿
𝑗
(𝑡), and 𝑡−𝜂

𝑗
(𝑡), respectively. Obviously, 𝛼

𝑖
(𝑡), 𝛽

𝑖
(𝑡), 𝜇

𝑗
(𝑡),

]
𝑗
(𝑡) ∈ 𝑃𝐶

1

𝜔
. We also denote that

𝐹
1
(𝑡) = 𝐴

1
(𝑡) −

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝛼

𝑖
(𝑡))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑡))

,

𝐹
2
(𝑡) = 𝐴

2
(𝑡) −

𝑚

∑

𝑗=1

𝐵
2𝑗
(]

𝑗
(𝑡))

1 − 𝜂


𝑗
(]

𝑗
(𝑡))

,

𝐹
∗

1
(𝑡) = 𝐴

1
(𝑡) +

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝛼

𝑖
(𝑡))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑡))

,

𝐹
∗

2
(𝑡) = 𝐴

2
(𝑡) +

𝑚

∑

𝑗=1

𝐵
2𝑗
(]

𝑗
(𝑡))

1 − 𝜂


𝑗
(]

𝑗
(𝑡))

,

𝐺
1
(𝑡) =

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝜇

𝑗
(𝑡))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑡))

,

𝐺
2
(𝑡) =

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝛽

𝑖
(𝑡))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝑡))

.

(22)

Theorem 12. In addition to (𝐻
1
)–(𝐻

3
), assume that one of the

following conditions hold:

(𝐻
4
) 𝑟

1
𝐹
∗𝑀

1
< 𝑟

2
𝐺
𝐿

2
, 𝑟

2
𝐹
∗𝑀

2
< 𝑟

1
𝐺
𝐿

1
;

(𝐻
5
) 𝑟

1
𝐹
∗𝐿

1
> 𝑟

2
𝐺
𝑀

2
, 𝑟

2
𝐹
∗𝐿

2
> 𝑟

1
𝐺
𝑀

1
.

Then systems (3) and (4) have at least one positive 𝜔-
periodic solution, where 𝐹

∗

1
(𝑡), 𝐹∗

2
(𝑡), 𝐺

1
(𝑡), and 𝐺

2
(𝑡) are

defined in (22).
Proof. Since the solutions of systems (11) and (12) remain
positive for 𝑡 ≥ 0, we carry out the change of variable 𝑢

𝑖
(𝑡) =

ln𝑦
𝑖
(𝑡) (𝑖 = 1, 2); then (11) can be transformed to

𝑢


1
(𝑡) = 𝑟

1
(𝑡) − 𝐴

1
(𝑡) 𝑒

𝑢
1

(𝑡)

−

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))

,

𝑢


2
(𝑡) = 𝑟

2
(𝑡) − 𝐴

2
(𝑡) 𝑒

𝑢
2

(𝑡)

−

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝜂
𝑗

(𝑡))

−

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜎
𝑖

(𝑡))

.

(23)

It is easy to see that if system (23) has one 𝜔-periodic
solution (𝑢

∗

1
(𝑡), 𝑢

∗

2
(𝑡))

𝑇, then (𝑦
∗

1
(𝑡), 𝑦

∗

2
(𝑡))

𝑇

= (𝑒
𝑢
∗

1

(𝑡)

, 𝑒
𝑢
∗

2

(𝑡)

)
𝑇

is a positive 𝜔-periodic solution of system (10); that is to
say, (𝑥∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇

= (∏
0<𝑡
𝑘

<𝑡
(1 + 𝜃

1𝑘
)𝑒

𝑢
∗

1

(𝑡)

,∏
0<𝑡
𝑘

<𝑡
(1 +

𝜃
2𝑘
)𝑒

𝑢
∗

2

(𝑡)

)
𝑇 is a positive 𝜔-periodic solution of system (2).

Therefore, it suffices to prove that system (23) has a 𝜔-
periodic solution. In order to use Lemma 7 to (23), we take

𝑋 = 𝑍 = {𝑢 (𝑡) = (𝑢
1
(𝑡) , 𝑢

2
(𝑡))

𝑇

| 𝑢
𝑖
(𝑡)

∈ 𝐶 (𝑅, 𝑅
2

) : 𝑢
𝑖
(𝑡 + 𝜔) = 𝑢

𝑖
(𝑡) , 𝑙 = 1, 2}

(24)

and define

‖𝑢‖ =

2

∑

𝑖=1

sup
𝑡∈[0,𝜔]





𝑢
𝑙
(𝑡)





,

𝑢 (𝑡) = (𝑢
1
(𝑡) , 𝑢

2
(𝑡))

𝑇

∈ 𝑋 (or 𝑍) .

(25)

Then𝑋 and𝑍 are Banach spaces when they are endowedwith
the norm ‖ ⋅ ‖. Let𝑁 : 𝑋 → 𝑍 with

𝑁𝑢 =

[
[
[
[
[

[

𝑟
1
(𝑡) − 𝐴

1
(𝑡) 𝑒

𝑢
1

(𝑡)

−

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))

𝑟
2
(𝑡) − 𝐴

2
(𝑡) 𝑒

𝑢
2

(𝑡)

−

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝜂
𝑗

(𝑡))

−

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜎
𝑖

(𝑡))

]
]
]
]
]

]

= [

𝑓
1
(𝑡)

𝑓
2
(𝑡)

] for any 𝑢 ∈ 𝑋, (26)

and define

𝐿𝑢 = 𝑢


; 𝑃𝑢 =

1

𝜔

∫

𝜔

0

𝑢 (𝑡) 𝑑𝑡, 𝑢 ∈ 𝑋;

𝑄𝑧 =

1

𝜔

∫

𝜔

0

𝑧 (𝑡) 𝑑𝑡, 𝑧 ∈ 𝑍.

(27)

It is not difficult to show that
Ker 𝐿 = {𝑢 ∈ 𝑋 | 𝑢 = ℎ ∈ 𝑅

2

} ,

Im 𝐿 = {𝑧 ∈ 𝑍 | ∫

𝜔

0

𝑧 (𝑠) 𝑑𝑠 = 0} ,

(28)
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and dimKer𝐿 = 2 = codimIm𝐿. So, Im 𝐿 is closed in𝑍, and 𝐿
is a Fredholmmapping of index zero. It is trivial to show that
𝑃, 𝑄 are continuous projectors such that

Im𝑃 = Ker 𝐿, Ker𝑄 = Im 𝐿 = Im (𝐼 − 𝑄) . (29)

Furthermore, the generalized inverse (to L) 𝐾
𝑃

: Im 𝐿 →

Ker𝑃 ∩ Dom𝐿 exists and is given by

𝐾
𝑃
𝑧 = ∫

𝑡

0

𝑧 (𝑠) 𝑑𝑠 −

1

𝜔

∫

𝜔

0

∫

𝑡

0

𝑧 (𝑠) 𝑑𝑠 𝑑𝑡. (30)

Thus, for 𝑢 ∈ 𝑋

𝑄𝑁𝑢 =
(

(

1

𝜔

∫

𝜔

0

[

[

𝑟
1
(𝑡) − 𝐴

1
(𝑡) 𝑒

𝑢
1

(𝑡)

−

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))]

]

𝑑𝑡

1

𝜔

∫

𝜔

0

[

[

𝑟
2
(𝑡) − 𝐴

2
(𝑡) 𝑒

𝑢
2

(𝑡)

−

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝜂
𝑗

(𝑡))

−

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜎
𝑖

(𝑡))]

]

𝑑𝑡

)

)

, (31)

𝐾
𝑃
(𝐼 − 𝑄)𝑁𝑢 = (

∫

𝑡

0

𝑓
1
(𝜉) 𝑑𝜉

∫

𝑡

0

𝑓
2
(𝜉) 𝑑𝜉

) −(

1

𝜔

∫

𝜔

0

∫

𝑡

0

𝑓
1
(𝜉) 𝑑𝜉 𝑑𝑡

1

𝜔

∫

𝜔

0

∫

𝑡

0

𝑓
2
(𝜉) 𝑑𝜉 𝑑𝑡

) −(

(

𝑡

𝜔

−

1

2

)∫

𝜔

0

𝑓
1
(𝜉) 𝑑𝜉

(

𝑡

𝜔

−

1

2

)∫

𝜔

0

𝑓
2
(𝜉) 𝑑𝜉

) . (32)

Clearly, 𝑄𝑁 and 𝐾
𝑃
(𝐼 − 𝑄)𝑁 are continuous. By applying

Ascoli-Arzela theorem, one can easily show that 𝑄𝑁(Ω),
𝐾
𝑃
(𝐼 −𝑄)𝑁(Ω) are relatively compact for any open bounded

setΩ ⊂ 𝑋. Moreover, 𝑄𝑁(Ω) is obviously bounded. Thus,𝑁
is 𝐿-compact onΩ for any open bounded setΩ ⊂ 𝑋. Now, we
reach the position to search for an appropriate open bounded
set Ω ⊂ 𝑋 for the application of Lemma 7. Corresponding to
the operating equation 𝐿𝑢 = 𝜆𝑁𝑢, 𝜆 ∈ (0, 1), we have

𝑢


1
(𝑡) = 𝜆

[

[

𝑟
1
(𝑡) − 𝐴

1
(𝑡) 𝑒

𝑢
1

(𝑡)

−

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))
]

]

,

𝑢


2
(𝑡) = 𝜆

[

[

𝑟
2
(𝑡) − 𝐴

2
(𝑡) 𝑒

𝑢
2

(𝑡)

−

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝜂
𝑗

(𝑡))

−

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜎
𝑖

(𝑡))

] .

(33)

Since 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢

2
(𝑡))

𝑇 is a 𝜔-periodic function, we need
only to prove the result in the interval [0, 𝜔]. Integrating (33)
over the interval [0, 𝜔] leads to the following:

∫

𝜔

0

[

[

𝑟
1
(𝑡) − 𝐴

1
(𝑡) 𝑒

𝑢
1

(𝑡)

−

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))
]

]

𝑑𝑡 = 0,

∫

𝜔

0

[

[

𝑟
2
(𝑡) − 𝐴

2
(𝑡) 𝑒

𝑢
2

(𝑡)

−

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝜂
𝑗

(𝑡))

−

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜎
𝑖

(𝑡))

]𝑑𝑡 = 0.

(34)

Hence, we have

∫

𝜔

0

[

[

𝐴
1
(𝑡) 𝑒

𝑢
1

(𝑡)

+

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

+

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))
]

]

𝑑𝑡 = 𝑟
1
𝜔,

∫

𝜔

0

[

[

𝐴
2
(𝑡) 𝑒

𝑢
2

(𝑡)

+

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝜂
𝑗

(𝑡))

+

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜎
𝑖

(𝑡))

]𝑑𝑡 = 𝑟
2
𝜔.

(35)

Note that 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢

2
(𝑡)) ∈ 𝑋, and then there exists

𝜁
𝑙
, 𝜉

𝑙
∈ [0, 𝜔] (𝑙 = 1, 2) such that

𝑢
𝑙
(𝜁

𝑙
) = inf

𝑡∈[0,𝜔]

𝑢
𝑙
(𝑡) , 𝑢

𝑙
(𝜉

𝑙
) = sup

𝑡∈[0,𝜔]

𝑢
𝑙
(𝑡) , 𝑙 = 1, 2.

(36)

Since 𝜏
𝑖
(𝑡) < 1, we can let 𝑠 = 𝑡 − 𝜏

𝑖
(𝑡), that is, 𝑡 = 𝛼

𝑖
(𝑠) (𝑖 =

1, 2, . . . , 𝑛); then

∫

𝜔

0

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

𝑑𝑡 = ∫

𝜔−𝜏
𝑖

(𝜔)

−𝜏
𝑖

(0)

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

𝑒
𝑢
1

(𝑠)

𝑑𝑠. (37)
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According to Lemma 7, we know that ((𝐵
1𝑖
(𝛼

𝑖
(𝑠)))/(1 −

𝜏


𝑖
(𝛼

𝑖
(𝑠))))𝑒

𝑢
1

(𝑠)

∈ 𝐶
𝜔
. Thus,

∫

𝜔−𝜏
𝑖

(𝜔)

−𝜏
𝑖

(0)

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

𝑒
𝑢
1

(𝑠)

𝑑𝑠 = ∫

𝜔

0

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

𝑒
𝑢
1

(𝑠)

𝑑𝑠.

(38)

By (37) and (38), we have

∫

𝜔

0

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

𝑑𝑡 = ∫

𝜔

0

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

𝑒
𝑢
1

(𝑠)

𝑑𝑠. (39)

Similarly, we obtain

∫

𝜔

0

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))

𝑑𝑡 = ∫

𝜔

0

𝐶
1𝑗
(𝜇

𝑗
(𝑠))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑠))

𝑒
𝑢
2

(𝑠)

𝑑𝑠,

∫

𝜔

0

𝐵
2𝑗
(𝑡) 𝑒

𝑢
1

2(𝑡−𝜂
𝑗

(𝑡))

𝑑𝑡 = ∫

𝜔

0

𝐵
2𝑗
(]

𝑗
(𝑠))

1 − 𝜂


𝑗
(]

𝑗
(𝑠))

𝑒
𝑢
2

(𝑠)

𝑑𝑠,

∫

𝜔

0

𝐶
2𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜎
𝑖

(𝑡))

𝑑𝑡 = ∫

𝜔

0

𝐶
2𝑖
(𝛽

𝑖
(𝑠))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝑠))

𝑒
𝑢
1

(𝑠)

𝑑𝑠.

(40)

It follows from (35), (39), and (40) that we get

∫

𝜔

0

[

[

(𝐴
1
(𝑠) +

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

) 𝑒
𝑢
1

(𝑠)

+

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝜇

𝑗
(𝑠))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑠))

𝑒
𝑢
2

(𝑠)
]

]

𝑑𝑠 = 𝑟
1
𝜔,

∫

𝜔

0

[

[

(𝐴
2
(𝑠) +

𝑚

∑

𝑗=1

𝐵
2𝑗
(]

𝑗
(𝑠))

1 − 𝜂


𝑗
(]

𝑗
(𝑠))

) 𝑒
𝑢
2

(𝑠)

+

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝛽

𝑖
(𝑠))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝑠))

𝑒
𝑢
1

(𝑠)

]𝑑𝑠 = 𝑟
2
𝜔.

(41)

Thus, from (41) we get

∫

𝜔

0

𝐹
∗

1
(𝑠) 𝑒

𝑢
1

(𝑠)

𝑑𝑠 + ∫

𝜔

0

𝐺
1
(𝑠) 𝑒

𝑢
2

(𝑠)

𝑑𝑠 = 𝑟
1
𝜔,

∫

𝜔

0

𝐹
∗

2
(𝑠) 𝑒

𝑢
2

(𝑠)

𝑑𝑠 + ∫

𝜔

0

𝐺
2
(𝑠) 𝑒

𝑢
1

(𝑠)

𝑑𝑠 = 𝑟
2
𝜔,

(42)

where 𝐹∗

1
(𝑠), 𝐹∗

2
(𝑠), 𝐺

1
(𝑠), and 𝐺

2
(𝑠) are defined by (22). On

the other hand, by Lemma 7, we can see that𝛼
𝑖
(𝜔) = 𝛼

𝑖
(0)+𝜔,

so we can derive

∫

𝜔

0

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

𝑑𝑠 = ∫

𝛼
𝑖

(𝜔)

𝛼
𝑖

(0)

𝐵
1𝑖
(𝑡) (1 − 𝜏



𝑖
(𝛼

𝑖
(𝑡)))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑡))

𝑑𝑡

= ∫

𝜔

0

𝐵
1𝑖
(𝑡) 𝑑𝑡 = 𝐵

1𝑖
𝜔.

(43)

Thus, from (43) we get

𝐹
∗

1
𝜔 = ∫

𝜔

0

𝐹
∗

1
(𝑠) 𝑑𝑠 = ∫

𝜔

0

[𝐴
1
(𝑠) +

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

] 𝑑𝑠

= (𝐴
1
−

𝑛

∑

𝑖=1

𝐵
1𝑖
)𝜔,

𝐹
∗

2
𝜔 = ∫

𝜔

0

𝐹
∗

2
(𝑠) 𝑑𝑠 = ∫

𝜔

0

[

[

𝐴
2
(𝑠) +

𝑛

∑

𝑖=1

𝐵
2𝑗
(]

𝑗
(𝑠))

1 − 𝜂


𝑗
(]

𝑗
(𝑠))

]

]

𝑑𝑠

= (𝐴
2
+

𝑛

∑

𝑖=1

𝐵
2𝑗
)𝜔,

𝐺
1
𝜔 = ∫

𝜔

0

𝐺
1
(𝑠) 𝑑𝑠

= ∫

𝜔

0

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝜇

𝑗
(𝑠))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑠))

𝑑𝑠 =

𝑚

∑

𝑗=1

𝐶
1𝑗
𝜔,

𝐺
2
𝜔 = ∫

𝜔

0

𝐺
2
(𝑠) 𝑑𝑠

= ∫

𝜔

0

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝛽

𝑖
(𝑠))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝑠))

𝑑𝑠 =

𝑛

∑

𝑖=1

𝐶
2𝑖
𝜔.

(44)

On one hand, by (42), we have

𝐺
𝐿

1
∫

𝜔

0

𝑒
𝑢
2

(𝑠)

𝑑𝑠 ≤ ∫

𝜔

0

𝐺
1
(𝑠) 𝑒

𝑢
2

(𝑠)

𝑑𝑠 ≤ 𝑟
1
𝜔,

𝐺
𝐿

2
∫

𝜔

0

𝑒
𝑢
1

(𝑠)

𝑑𝑠 ≤ ∫

𝜔

0

𝐺
2
(𝑠) 𝑒

𝑢
1

(𝑠)

𝑑𝑠 ≤ 𝑟
2
𝜔,

(45)

which implies that

∫

𝜔

0

𝑒
𝑢
2

(𝑠)

𝑑𝑠 ≤

𝑟
1
𝜔

𝐺
𝐿

1

,

∫

𝜔

0

𝑒
𝑢
1

(𝑠)

𝑑𝑠 ≤

𝑟
2
𝜔

𝐺
𝐿

2

.

(46)

On the other hand, by (42), the integral mean value theorem
that there are 𝜆

1
, 𝜆

2
, 𝜌

1
, and 𝜌

2
∈ [0, 𝜔] such that

𝐹
∗

1
(𝜆

1
) ∫

𝜔

0

𝑒
𝑢
1

(𝑠)

𝑑𝑠 + 𝐺
1
(𝜌

1
) ∫

𝜔

0

𝑒
𝑢
2

(𝑠)

𝑑𝑠 = 𝑟
1
𝜔,

𝐹
∗

2
(𝜆

2
) ∫

𝜔

0

𝑒
𝑢
2

(𝑠)

𝑑𝑠 + 𝐺
2
(𝜌

2
) ∫

𝜔

0

𝑒
𝑢
1

(𝑠)

𝑑𝑠 = 𝑟
2
𝜔.

(47)
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By (𝐻
4
), we have 𝐺

𝐿

1
𝐺
𝐿

2
> 𝐹

∗𝑀

1
𝐹
∗𝑀

2
, which, together with

(47), lead to

∫

𝜔

0

𝑒
𝑢
1

(𝑠)

𝑑𝑠 =

𝑟
2
𝜔𝐺

1
(𝜌

1
) − 𝑟

1
𝜔𝐹

∗

2
(𝜆

2
)

𝐺
1
(𝜌

1
) 𝐺

2
(𝜌

2
) − 𝐹

∗

1
(𝜆

1
) 𝐹

∗

2
(𝜆

2
)

≥

𝑟
2
𝜔𝐺

𝐿

1
− 𝑟

1
𝜔𝐹

∗𝑀

2

𝐺
𝑀

1
𝐺
𝑀

2
− 𝐹

∗𝐿

1
𝐹
∗𝐿

2

:= Γ
1
𝜔,

∫

𝜔

0

𝑒
𝑢
2

(𝑠)

𝑑𝑠 =

𝑟
1
𝜔𝐺

2
(𝜌

2
) − 𝑟

2
𝜔𝐹

∗

1
(𝜆

1
)

𝐺
1
(𝜌

1
) 𝐺

2
(𝜌

2
) − 𝐹

∗

1
(𝜆

1
) 𝐹

∗

2
(𝜆

2
)

≥

𝑟
1
𝜔𝐺

𝐿

2
− 𝑟

2
𝜔𝐹

∗𝑀

1

𝐺
𝑀

1
𝐺
𝑀

2
− 𝐹

∗𝐿

1
𝐹
∗𝐿

2

:= Γ
2
𝜔.

(48)

Again, by (𝐻
4
), one can deduce that the following inequali-

ties:

𝑟
2
𝜔

𝐺
𝐿

2

≥

𝑟
2
𝜔𝐺

𝐿

1
− 𝑟

1
𝜔𝐹

∗𝑀

2

𝐺
𝑀

1
𝐺
𝑀

2
− 𝐹

∗𝐿

1
𝐹
∗𝐿

2

:= Γ
1
𝜔 > 0,

𝑟
1
𝜔

𝐺
𝐿

1

≥

𝑟
1
𝜔𝐺

𝐿

2
− 𝑟

2
𝜔𝐹

∗𝑀

1

𝐺
𝑀

1
𝐺
𝑀

2
− 𝐹

∗𝐿

1
𝐹
∗𝐿

2

:= Γ
2
𝜔 > 0.

(49)

It follows from (46), (48), and (49) that

Γ
2
𝜔 ≤ ∫

𝜔

0

𝑒
𝑢
2

(𝑠)

𝑑𝑠 ≤

𝑟
1
𝜔

𝐺
𝐿

1

,

Γ
1
𝜔 ≤ ∫

𝜔

0

𝑒
𝑢
1

(𝑠)

𝑑𝑠 ≤

𝑟
2
𝜔

𝐺
𝐿

2

,

(50)

which together with (36) yield

Γ
2
≤ 𝑒

𝑢
2

(𝜁
2

)

, 𝑒
𝑢
2

(𝜉
2

)

≤

𝑟
1

𝐺
𝐿

1

,

Γ
1
≤ 𝑒

𝑢
1

(𝜁
1

)

, 𝑒
𝑢
1

(𝜉
1

)

≤

𝑟
2

𝐺
𝐿

2

,

(51)

which implies that

ln Γ
2
≤ 𝑢

2
(𝜉

2
) , 𝑢

2
(𝜁

2
) ≤ ln 𝑟

1

𝐺
𝐿

1

,

ln Γ
1
≤ 𝑢

1
(𝜉

1
) , 𝑢

1
(𝜁

1
) ≤ ln 𝑟

2

𝐺
𝐿

2

.

(52)

From the first equation of (32), we get

∫

𝜔

0






𝑢


1
(𝑡)






𝑑𝑡

= 𝜆∫

𝜔

0












𝑟
1
(𝑡) − 𝐴

1
(𝑡) 𝑒

𝑢
1

(𝑡)

−

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))













𝑑𝑡

≤ ∫

𝜔

0





𝑟
1
(𝑡)





𝑑𝑡

+ ∫

𝜔

0

[𝐴
1
(𝑡) 𝑒

𝑢
1

(𝑡)

+

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

+

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))
]

]

𝑑𝑡

= ∫

𝜔

0





𝑟
1
(𝑡)





𝑑𝑡

+ ∫

𝜔

0

[𝐴
1
(𝑠) 𝑒

𝑢
1

(𝑠)

+

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

𝑒
𝑢
1

(𝑠)

+

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝜇

𝑗
(𝑠))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑠))

𝑒
𝑢
2

(𝑠)
]

]

𝑑𝑠

= ∫

𝜔

0





𝑟
1
(𝑡)





𝑑𝑡

+ ∫

𝜔

0

[(𝐴
1
(𝑠) +

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

) 𝑒
𝑢
1

(𝑠)

+

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝜇

𝑗
(𝑠))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑠))

𝑒
𝑢
2

(𝑠)
]

]

𝑑𝑠

= ∫

𝜔

0





𝑟
1
(𝑡)





𝑑𝑡

+ ∫

𝜔

0

[𝐹
∗

1
(𝑠) 𝑒

𝑢
1

(𝑠)

+ 𝐺
1
(𝑠) 𝑒

𝑢
2

(𝑠)

] 𝑑𝑠

≤ 𝑅
1
𝜔 + 𝐹

∗𝑀

1
∫

𝜔

0

𝑒
𝑢
1

(𝑠)

𝑑𝑠 + 𝐺
𝑀

1
∫

𝜔

0

𝑒
𝑢
2

(𝑠)

𝑑𝑠,

(53)

where 𝑅
1
= (1/𝜔) ∫

𝜔

0

|𝑟
1
(𝑡)|𝑑𝑡, 𝐹∗

1
(𝑠), 𝐺

1
(𝑠) are defined by

(22). By (46) and (53), we obtain

∫

𝜔

0






𝑢


1
(𝑡)






𝑑𝑡 ≤ 𝑅

1
𝜔 + 𝐹

∗𝑀

1

𝑟
2
𝜔

𝐺
𝐿

2

+ 𝐺
𝑀

1

𝑟
1
𝜔

𝐺
𝐿

1

:= Δ
1
. (54)

Similarly, by the second equation of (32), we get

∫

𝜔

0






𝑢


2
(𝑡)






𝑑𝑡 ≤ 𝑅

2
𝜔 + 𝐹

∗𝑀

2

𝑟
1
𝜔

𝐺
𝐿

1

+ 𝐺
𝑀

2

𝑟
2
𝜔

𝐺
𝐿

2

:= Δ
2
, (55)
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where 𝑅
2
= (1/𝜔) ∫

𝜔

0

|𝑟
2
(𝑡)|𝑑𝑡, 𝐹∗

2
(𝑠), 𝐺

2
(𝑠) are defined by

(22). From (52), (54), and (55) and Lemma 10, it follows that
for 𝑡 ∈ [0, 𝜔] that

𝑢
1
(𝑡) ≤ 𝑢

1
(𝜁

1
) +

1

2

∫

𝜔

0






𝑢


1
(𝑡)






𝑑𝑡 ≤ ln 𝑟

2

𝐺
𝐿

2

+

1

2

Δ
1
,

𝑢
2
(𝑡) ≤ 𝑢

2
(𝜁

1
) +

1

2

∫

𝜔

0






𝑢


2
(𝑡)






𝑑𝑡 ≤ ln 𝑟

1

𝐺
𝐿

1

+

1

2

Δ
2
,

𝑢
1
(𝑡) ≥ 𝑢

1
(𝜉

1
) −

1

2

∫

𝜔

0






𝑢


1
(𝑡)






𝑑𝑡 ≥ ln Γ

1
−

1

2

Δ
1
,

𝑢
2
(𝑡) ≥ 𝑢

2
(𝜉

1
) −

1

2

∫

𝜔

0






𝑢


2
(𝑡)






𝑑𝑡 ≥ ln Γ

2
−

1

2

Δ
2
.

(56)

Let

𝑅
1
= max{











ln 𝑟
2

𝐺
𝐿

2

+

1

2

Δ
1











,









ln Γ
1
−

1

2

Δ
1









} ,

𝑅
2
= max{











ln 𝑟
1

𝐺
𝐿

1

+

1

2

Δ
2











,









ln Γ
2
−

1

2

Δ
2









} .

(57)

It follows from (56)–(57) that

sup
𝑡∈[0,𝜔]





𝑢
1
(𝑡)





≤ 𝑅

1
,

sup
𝑡∈[0,𝜔]





𝑢
2
(𝑡)





≤ 𝑅

2
.

(58)

Clearly, Γ
𝑙
, Δ

𝑙
, 𝑅

𝑙
(𝑙 = 1, 2) are independent of𝜆, respectively.

Note that ∫𝜔
0

𝐹
𝑙
(𝑡)𝑑𝑡 ≤ 𝐹

𝑀

𝑙
𝜔, ∫𝜔

0

𝐺
𝑙
(𝑡)𝑑𝑡 ≤ 𝐺

𝐿

𝑙
𝜔 (𝑙 = 1, 2).

From (44), we have

𝐴
1
+

𝑛

∑

𝑖=1

𝐵
1𝑖
= 𝐹

∗

1
≤ 𝐹

∗𝑀

1
, 𝐺

𝐿

1
≤ 𝐺

1
=

𝑚

∑

𝑗=1

𝐶
1𝑗
;

𝐴
2
+

𝑚

∑

𝑗=1

𝐵
2𝑗
= 𝐹

∗

2
≤ 𝐹

∗𝑀

2
, 𝐺

𝐿

2
≤ 𝐺

2
=

𝑛

∑

𝑖=1

𝐶
2𝑖
,

(59)

which deduces that

𝑟
1
(𝐴

1
+

𝑛

∑

𝑖=1

𝐵
1𝑖
) = 𝑟

1
𝐹
∗

1
≤ 𝑟

1
𝐹
∗𝑀

1
< 𝑟

2
𝐺
𝐿

2

≤ 𝑟
2
𝐺
2
= 𝑟

2

𝑛

∑

𝑖=1

𝐶
2𝑖
;

𝑟
2
(𝐴

2
+

𝑚

∑

𝑗=1

𝐵
2𝑗
) = 𝑟

2
𝐹
∗

2
≤ 𝑟

2
𝐹
∗𝑀

2
< 𝑟

1
𝐺
𝐿

1

≤ 𝑟
1
𝐺
1
= 𝑟

1

𝑚

∑

𝑗=1

𝐶
1𝑗
,

(60)

which implies that

𝑟
1
(𝐴

1
+

𝑛

∑

𝑖=1

𝐵
1𝑖
) ≤ 𝑟

2

𝑛

∑

𝑖=1

𝐶
2𝑖
;

𝑟
2
(𝐴

2
+

𝑚

∑

𝑗=1

𝐵
2𝑗
) ≤ 𝑟

1

𝑚

∑

𝑗=1

𝐶
1𝑗
.

(61)

Hence

(𝐴
1
+

𝑛

∑

𝑖=1

𝐵
1𝑖
)(𝐴

2
+

𝑚

∑

𝑗=1

𝐵
2𝑗
) ≤

𝑚

∑

𝑗=1

𝐶
1𝑗

𝑛

∑

𝑖=1

𝐶
2𝑖
. (62)

From (61) and (62), it is easy to show that the system of
algebraic equations

𝑟
1
− (𝐴

1
+

𝑛

∑

𝑖=1

𝐵
1𝑖
)𝑒

𝑢
1

−

𝑚

∑

𝑗=1

𝐶
1𝑗
𝑒
𝑢
2

= 0,

𝑟
2
− (𝐴

2
+

𝑚

∑

𝑗=1

𝐵
2𝑗
)𝑒

𝑢
2

−

𝑛

∑

𝑖=1

𝐶
2𝑖
𝑒
𝑢
1

= 0

(63)

has a unique solution (𝑢
∗

1
, 𝑢

∗

2
) ∈ 𝑅

2. In view of (58), we can
take sufficiently large R such that 𝑅 > 𝑅

1
+𝑅

2
, 𝑅 > |𝑢

∗

1
| + |𝑢

∗

2
|

and define Ω = {𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢

2
(𝑡))

𝑇

∈ 𝑋 : ‖𝑢‖ < 𝑅}, and
it is clear that Ω satisfies condition (a) of Lemma 7. Letting
𝑢 ∈ 𝜕Ω ∩ Ker 𝐿 = 𝜕Ω ∩ 𝑅

2, then 𝑢 is a constant vector in 𝑅
2

with ‖𝑢‖ = 𝑅. Then

𝑄𝑁𝑢 = (

𝑟
1
− (𝐴

1
+

𝑛

∑

𝑖=1

𝐵
1𝑖
)𝑒

𝑢
1

−

𝑚

∑

𝑗=1

𝐶
1𝑗
𝑒
𝑢
2

𝑟
2
− (𝐴

2
+

𝑚

∑

𝑗=1

𝐵
2𝑗
)𝑒

𝑢
2

−

𝑛

∑

𝑖=1

𝐶
2𝑖
𝑒
𝑢
1

) ̸= 0;

(64)

that is, condition (b) of Lemma 7 holds. In order to verify
condition (c) in the Lemma 7, by (62) and the formula for
Brouwer degree, a straightforward calculation shows that

deg {𝐽𝑄𝑁𝑢,Ker 𝐿 ∩ 𝜕Ω, 0}

= sign
{

{

{

(

𝑚

∑

𝑗=1

𝐶
1𝑗

𝑛

∑

𝑖=1

𝐶
2𝑖
− (𝐴

1
+

𝑛

∑

𝑖=1

𝐵
1𝑖
)

× (𝐴
2
+

𝑚

∑

𝑗=1

𝐵
2𝑗
))𝑒

(𝑢
∗

1

+𝑢
∗

2

)
}

}

}

̸= 0.

(65)

By now we have proved that all the requirements in Lemma 7
hold. Hence system (32) has at least one 𝜔-periodic solution,
say (𝑢

∗

1
, 𝑢

∗

2
)
𝑇. Setting 𝑦

∗

1
(𝑡) = 𝑒

𝑢
∗

1

(𝑡), 𝑦∗
2
(𝑡) = 𝑒

𝑢
∗

2

(𝑡), then
(𝑦

∗

1
(𝑡), 𝑦

∗

2
(𝑡))

𝑇 has at least one positive 𝜔-periodic solution
of systems (11) and (12). Furthermore, setting 𝑥

∗

1
(𝑡) =

∏
0<𝑡
𝑘

<𝑡
(1 + 𝜃

1𝑘
)𝑦

∗

1
(𝑡), 𝑥∗

2
(𝑡) = ∏

0<𝑡
𝑘

<𝑡
(1 + 𝜃

2𝑘
)𝑦

∗

2
(𝑡), then

(𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇 has at least one positive 𝜔-periodic solution
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of systems (3) and (4). If (𝐻
5
) holds, similarly, we can prove

that systems (2) and (4) have at least one positive 𝜔-periodic
solution. The proof of Theorem 12 is complete.

We now proceed to the discussion on the uniqueness
and global stability of the 𝜔-periodic solution 𝑥

∗

(𝑡) in
Theorem 12. It is immediate that if 𝑥∗(𝑡) is globally asymp-
totically stable, then 𝑥

∗

(𝑡) is unique in fact.

Theorem 13. In addition to (𝐻
1
)–(𝐻

3
), assume further that

(𝐻
6
) 𝐹

∗𝐿

1
𝐹
∗𝐿

2
> 𝐺

𝑀

1
𝐺
𝑀

2
.

Then systems (3) and (4) have a unique positive 𝜔-
periodic solution 𝑥

∗

(𝑡) = (𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇 which is globally
asymptotically stable.

Proof. Letting 𝑥
∗

(𝑡) = (𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇 be a positive 𝜔-
periodic solution of (3) and (4), then 𝑦

∗

(𝑡) = (𝑦
∗

1
(𝑡), 𝑦

∗

2
(𝑡))

𝑇,
(𝑦

∗

𝑙
(𝑡) = ∏

0<𝑡
𝑘

<𝑡
(1 + 𝜃

𝑙𝑘
)
−1

𝑥
∗

𝑙
(𝑡)) (𝑙 = 1, 2) is the positive

𝜔-periodic solution of system (11) and (12), and let 𝑦
𝑙
(𝑡) =

(𝑦
1
(𝑡), 𝑦

2
(𝑡))

𝑇 be any positive solution of system (11) with the
initial conditions (12). It follows from Theorem 12 that there
exist positive constants 𝑇, 𝑟

𝑙
, 𝑅

𝑙
, such that, for all 𝑡 ≥ 𝑇,

𝑟
𝑙
≤ 𝑦

∗

𝑙
(𝑡) ≤ 𝑅

𝑙
, 𝑙 = 1, 2. (66)

By the assumptions of Theorem 12, we can obtain 𝐹
∗𝐿

1
𝐹
∗𝐿

2
>

𝐺
𝑀

1
𝐺
𝑀

2
, and then there exist constants 𝛼

1
> 0, 𝛼

2
> 0; we can

choose a positive constant 𝜀 such that

𝐹
∗𝐿

1
𝛼
1
− 𝐺

𝑀

2
𝛼
2
= 𝜀, 𝐹

∗𝐿

2
𝛼
2
− 𝐺

𝑀

1
𝛼
1
= 𝜀. (67)

In the following, we always assume that 𝛼
1
and 𝛼

2
satisfy (67).

We define

𝑉
1
(𝑡) = 𝛼

1





ln𝑦

1
(𝑡) − ln𝑦∗

1
(𝑡)






+ 𝛼
2





ln𝑦

2
(𝑡) − ln𝑦∗

2
(𝑡)





.

(68)

Calculating the upper right derivative of𝑉
1
(𝑡) along solutions

of (11), it follows that

𝐷
+

𝑉
1
(𝑡)

=

2

∑

𝑙=1

𝛼
𝑙
(

̇𝑦
𝑙
(𝑡)

𝑦
𝑙
(𝑡)

−

̇𝑦
∗

𝑙
(𝑡)

𝑦
∗

𝑙
(𝑡)

) sgn (𝑦
𝑙
(𝑡) − 𝑦

∗

𝑙
(𝑡))

≤ sgn (𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)) 𝛼

𝑙

×

{

{

{

− 𝐴
1
(𝑡) (𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡))

−

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) (𝑦

1
(𝑡 − 𝜏

𝑖
(𝑡)) − 𝑦

∗

1
(𝑡 − 𝜏

𝑖
(𝑡)))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) (𝑦

2
(𝑡 − 𝛿

𝑗
(𝑡)) − 𝑦

∗

2
(𝑡 − 𝛿

𝑗
(𝑡)))

}

}

}

+ sgn (𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)) 𝛼

2

× { − 𝐴
2
(𝑡) (𝑦

2
(𝑡) − 𝑦

∗

2
(𝑡))

−

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) (𝑦

2
(𝑡 − 𝜂

𝑗
(𝑡)) − 𝑦

∗

2
(𝑡 − 𝜂

𝑗
(𝑡)))

−

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) (𝑦

1
(𝑡 − 𝜎

𝑖
(𝑡)) − 𝑦

∗

1
(𝑡 − 𝜎

𝑖
(𝑡)))}

≤ −𝛼
𝑙
𝐴

1
(𝑡)





𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






+

𝑛

∑

𝑖=1

𝛼
𝑙
𝐵
1𝑖
(𝑡)





𝑦
1
(𝑡 − 𝜏

𝑖
(𝑡)) − 𝑦

∗

1
(𝑡 − 𝜏

𝑖
(𝑡))






+

𝑚

∑

𝑗=1

𝛼
𝑙
𝐶
1𝑗
(𝑡)






𝑦
2
(𝑡 − 𝛿

𝑗
(𝑡)) − 𝑦

∗

2
(𝑡 − 𝛿

𝑗
(𝑡))







− 𝛼
2
𝐴

2
(𝑡)





𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)





+

𝑚

∑

𝑗=1

𝛼
2
𝐵
2𝑗
(𝑡)

×






𝑦
2
(𝑡 − 𝜂

𝑗
(𝑡)) − 𝑦

∗

2
(𝑡 − 𝜂

𝑗
(𝑡))







+

𝑛

∑

𝑖=1

𝛼
2
𝐶
2𝑖
(𝑡)





𝑦
1
(𝑡 − 𝜎

𝑖
(𝑡)) − 𝑦

∗

1
(𝑡 − 𝜎

𝑖
(𝑡))





.

(69)

We also define

𝑉
2
(𝑡) =

𝑛

∑

𝑖=1

𝛼
1
∫

𝑡

𝑡−𝜏
𝑖

(𝑡)

𝐵
1𝑖
(𝛼

𝑖
(𝜉))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝜉))





𝑦
1
(𝜉) − 𝑦

∗

1
(𝜉)





𝑑𝜉

+

𝑚

∑

𝑗=1

𝛼
1
∫

𝑡

𝑡−𝛿
𝑗

(𝑡)

𝐶
1𝑗
(𝜇

𝑗
(𝜉))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝜉))





𝑦
2
(𝜉) − 𝑦

∗

2
(𝜉)





𝑑𝜉

+

𝑚

∑

𝑗=1

𝛼
2
∫

𝑡

𝑡−𝜌
𝑗

(𝑡)

𝐵
2𝑗
(]

𝑗
(𝜉))

1 − 𝜌


𝑗
(]

𝑗
(𝜉))





𝑦
2
(𝜉) − 𝑦

∗

2
(𝜉)





𝑑𝜉

+

𝑛

∑

𝑖=1

𝛼
2
∫

𝑡

𝑡−𝜎
𝑖

(𝑡)

𝐶
2𝑖
(𝛽

𝑖
(𝜉))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝜉))





𝑦
1
(𝜉) − 𝑦

∗

1
(𝜉)





𝑑𝜉.

(70)
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Calculating the upper right derivative of𝑉
2
(𝑡) along solutions

of (11), it follows that

𝐷
+

𝑉
2
(𝑡) =

𝑛

∑

𝑖=1

𝛼
1

𝐵
1𝑖
(𝛼

𝑖
(𝑡))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑡))





𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






−

𝑛

∑

𝑖=1

𝛼
1

𝐵
1𝑖
(𝑡)

1 − 𝜏


𝑖
(𝑡)

(1 − 𝜏


𝑖
(𝑡))

×




𝑦
1
(𝑡 − 𝜏

𝑖
(𝑡)) − 𝑦

∗

1
(𝑡 − 𝜏

𝑖
(𝑡))






+

𝑚

∑

𝑗=1

𝛼
1

𝐶
1𝑗
(𝜇

𝑗
(𝑡))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑡))





𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)






−

𝑚

∑

𝑗=1

𝛼
1

𝐶
1𝑗
(𝑡)

1 − 𝛿


𝑗
(𝑡)

(1 − 𝛿


𝑗
(𝑡))

×






𝑦
2
(𝑡 − 𝛿

𝑗
(𝑡)) − 𝑦

∗

2
(𝑡 − 𝛿

𝑗
(𝑡))







+

𝑚

∑

𝑗=1

𝛼
2

𝐵
2𝑗
(]

𝑗
(𝑡))

1 − 𝜂


𝑗
(]

𝑗
(𝑡))





𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)






−

𝑚

∑

𝑗=1

𝛼
1

𝐵
2𝑗
(𝑡)

1 − 𝜂


𝑗
(𝑡)

(1 − 𝜂


𝑗
(𝑡))

×






𝑦
2
(𝑡 − 𝜂

𝑗
(𝑡)) − 𝑦

∗

2
(𝑡 − 𝜂

𝑗
(𝑡))







+

𝑛

∑

𝑖=1

𝛼
2

𝐶
2𝑖
(𝛽

𝑖
(𝑡))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝑡))

×




𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)





−

𝑛

∑

𝑖=1

𝛼
2

𝐶
2𝑖
(𝑡)

1 − 𝜎


𝑖
(𝑡)

× (1 − 𝜎


𝑖
(𝑡))





𝑦
1
(𝑡 − 𝜎

𝑖
(𝑡)) − 𝑦

∗

1
(𝑡 − 𝜎

𝑖
(𝑡))





.

(71)

We define a Lyapunov functional 𝑉(𝑡) as follows:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) . (72)

Calculating the upper right derivative of𝑉(𝑡) along solutions
of (11), it follows that

𝐷
+

𝑉 (𝑡) = −𝛼
𝑙
𝐴

1
(𝑡)





𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






+

𝑛

∑

𝑖=1

𝛼
1

𝐵
1𝑖
(𝛼

𝑖
(𝑡))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑡))





𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






+

𝑚

∑

𝑗=1

𝛼
1

𝐶
1𝑗
(𝜇

𝑗
(𝑡))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑡))





𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)






− 𝛼
2
𝐴

2
(𝑡)





𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)






+

𝑚

∑

𝑗=1

𝛼
2

𝐵
2𝑗
(]

𝑗
(𝑡))

1 − 𝜂


𝑗
(]

𝑗
(𝑡))





𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)






+

𝑛

∑

𝑖=1

𝛼
2

𝐶
2𝑖
(𝛽

𝑖
(𝑡))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝑡))





𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






= −[𝛼
𝑙
𝐴

1
(𝑡) −

𝑛

∑

𝑖=1

𝛼
1

𝐵
1𝑖
(𝛼

𝑖
(𝑡))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑡))

−

𝑛

∑

𝑖=1

𝛼
2

𝐶
2𝑖
(𝛽

𝑖
(𝑡))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝑡))

]




𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






−
[

[

𝛼
2
𝐴

2
(𝑡) −

𝑚

∑

𝑗=1

𝛼
1

𝐶
1𝑗
(𝜇

𝑗
(𝑡))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑡))

−

𝑚

∑

𝑗=1

𝛼
2

𝐵
2𝑗
(]

𝑗
(𝑡))

1 − 𝜂


𝑗
(]

𝑗
(𝑡))

]

]





𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)






≤ (𝛼
𝑙
𝐹
𝐿

1
− 𝛼

2
𝐺
𝑀

2
)




𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






− (𝛼
2
𝐹
𝐿

2
− 𝛼

1
𝐺
𝑀

1
)




𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)






= −𝜀 (




𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)





+




𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)





) .

(73)

So by (73), we have

𝜀 ∫

𝑡

0

(




𝑦
1
(𝜉) − 𝑦

∗

1
(𝜉)





+




𝑦
2
(𝜉) − 𝑦

∗

2
(𝜉)





) 𝑑𝜉

+ 𝑉 (𝑡) ≤ 𝑉 (0) < +∞, 𝑡 ≥ 0,

(74)

where

𝑉 (0) = 𝛼
1





ln𝑦

1
(0) − ln𝑦∗

1
(0)





+ 𝛼

2





ln𝑦

2
(0) − ln𝑦∗

2
(0)






+

𝑛

∑

𝑖=1

𝛼
1
∫

0

−𝜏
𝑖

(0)

𝐵
1𝑖
(𝛼

𝑖
(𝜉))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝜉))





𝑦
1
(𝜉) − 𝑦

∗

1
(𝜉)





𝑑𝜉

+

𝑚

∑

𝑗=1

𝛼
1
∫

0

−𝛿
𝑗

(0)

𝐶
1𝑗
(𝜇

𝑗
(𝜉))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝜉))





𝑦
2
(𝜉) − 𝑦

∗

2
(𝜉)





𝑑𝜉

+

𝑚

∑

𝑗=1

𝛼
2
∫

0

−𝜌
𝑗

(0)

𝐵
2𝑗
(]

𝑗
(𝜉))

1 − 𝜌


𝑗
(]

𝑗
(𝜉))

×




𝑦
2
(𝜉) − 𝑦

∗

2
(𝜉)





𝑑𝜉

+

𝑛

∑

𝑖=1

𝛼
2
∫

0

−𝜎
𝑖

(0)

𝐶
2𝑖
(𝛽

𝑖
(𝜉))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝜉))





𝑦
1
(𝜉) − 𝑦

∗

1
(𝜉)





𝑑𝜉,

(75)
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which implies that

∫

𝑡

0

(




𝑦
1
(𝜉) − 𝑦

∗

1
(𝜉)





+




𝑦
2
(𝜉) − 𝑦

∗

2
(𝜉)





) 𝑑𝜉 ≤

𝑉 (0)

𝜀

. (76)

By (76), it is obvious that |𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)| + |𝑦

2
(𝑡) − 𝑦

∗

2
(𝑡)| is

bounded.
On the other hand, we know that

𝛼
1





ln𝑦

1
(𝑡) − ln𝑦∗

1
(𝑡)





+ 𝛼

2





ln𝑦

2
(𝑡) − ln𝑦∗

2
(𝑡)






≤ 𝑉 (𝑡) ≤ 𝑉 (0) < +∞, 𝑡 ≥ 0,

(77)

which implies that





ln𝑦

1
(𝑡) − ln𝑦∗

1
(𝑡)





≤

𝑉 (0)

𝛼
1

,





ln𝑦

2
(𝑡) − ln𝑦∗

2
(𝑡)





≤

𝑉 (0)

𝛼
2

,

(78)

which, together with (66), yield

𝑟
1
𝑒
−𝑉(0)/𝛼

1

≤ 𝑦
1
(𝑡) ≤ 𝑅

1
𝑒
𝑉(0)/𝛼

1

< +∞,

𝑟
2
𝑒
−𝑉(0)/𝛼

2

≤ 𝑦
2
(𝑡) ≤ 𝑅

2
𝑒
𝑉(0)/𝛼

2

< +∞.

(79)

From (66) and (79), it follows that 𝑦
𝑙
(𝑡) (𝑙 = 1, 2) is bounded

for 𝑡 ≥ 0. Hence, 𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡), 𝑦

2
(𝑡) − 𝑦

∗

2
(𝑡), and their

derivatives remain bounded on [0, +∞). So |𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)|,

|𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)| are uniformly continuous on [0, +∞). By

Lemma 11, we have

lim
𝑡→+∞





𝑦
𝑙
(𝑠) − 𝑦

∗

𝑙
(𝑠)






= lim
𝑡→+∞

[ ∏

0<𝑡
𝑘

<𝑡

(1 + 𝜃
𝑙𝑘
)
−1 



𝑥
∗

𝑙
(𝑠) − 𝑥

𝑙
(𝑠)





] = 0,

𝑙 = 1, 2.

(80)

Therefore

lim
𝑡→+∞





𝑥
𝑙
(𝑠) − 𝑥

∗

𝑙
(𝑠)





= 0, 𝑙 = 1, 2. (81)

By Theorems 7.4 and 8.2 in [30], we know that the periodic
positive solution 𝑥

∗

(𝑡) = (𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇 is uniformly asymp-
totically stable. The proof of Theorem 13 is completed.

Theorem 14. In addition to (𝐻
1
)–(𝐻

3
), assume that one of the

following conditions holds:

(𝐻
7
) 𝑟

1
𝐹
𝑀

1
< 𝑟

2
𝐺
𝐿

2
, 𝑟

2
𝐹
𝑀

2
< 𝑟

1
𝐺
𝐿

1
;

(𝐻
8
) 𝑟

1
𝐹
𝐿

1
> 𝑟

2
𝐺
𝑀

2
, 𝑟

2
𝐹
𝐿

2
> 𝑟

1
𝐺
𝑀

1
.

Then systems (2) and (4) have at least one positive 𝜔-
periodic solution, where 𝐹

1
(𝑡), 𝐹

2
(𝑡), 𝐺

1
(𝑡), and 𝐺

2
(𝑡) are

defined in (22).
Proof. Since the solutions of systems (10) and (12) remain
positive for 𝑡 ≥ 0, we carry out the change of variable 𝑢

𝑖
(𝑡) =

ln𝑦
𝑖
(𝑡) (𝑖 = 1, 2), and then (10) can be transformed to

𝑢


1
(𝑡) = 𝑟

1
(𝑡) − 𝐴

1
(𝑡) 𝑒

𝑢
1

(𝑡)

+

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))

,

𝑢


2
(𝑡) = 𝑟

2
(𝑡) − 𝐴

2
(𝑡) 𝑒

𝑢
2

(𝑡)

+

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝜂
𝑗

(𝑡))

−

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜎
𝑖

(𝑡))

.

(82)

It is easy to see that if system (82) has one𝜔-periodic solution
(𝑢

∗

1
(𝑡), 𝑢

∗

2
(𝑡))

𝑇, then (𝑦
∗

1
(𝑡), 𝑦

∗

2
(𝑡))

𝑇

= (𝑒
𝑢
∗

1

(𝑡)

, 𝑒
𝑢
∗

2

(𝑡)

)
𝑇 is a

positive 𝜔-periodic solution of systems (10) and (12); that is
to say, (𝑥∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇

= (∏
0<𝑡
𝑘

<𝑡
(1 + 𝜃

1𝑘
)𝑒

𝑢
∗

1

(𝑡)

,∏
0<𝑡
𝑘

<𝑡
(1 +

𝜃
2𝑘
)𝑒

𝑢
∗

2

(𝑡)

)
𝑇 is a positive𝜔-periodic solution of systems (2) and

(4). Therefore, it suffices to prove that system (82) has a 𝜔-
periodic solution. In order to use Lemma 6 for (81), we take

𝑋 = 𝑍 = {𝑢 (𝑡) = (𝑢
1
(𝑡) , 𝑢

2
(𝑡))

𝑇

| 𝑢
𝑖
(𝑡) ∈ 𝐶 (𝑅, 𝑅

2

)

: 𝑢
𝑖
(𝑡 + 𝜔) = 𝑢

𝑖
(𝑡) , 𝑙 = 1, 2}

(83)

and define

‖𝑢‖ =

2

∑

𝑖=1

sup
𝑡∈[0,𝜔]





𝑢
𝑙
(𝑡)





,

𝑢 (𝑡) = (𝑢
1
(𝑡) , 𝑢

2
(𝑡))

𝑇

∈ 𝑋 (or 𝑍) .

(84)

Then𝑋 and𝑍 are Banach spaces when they are endowedwith
the norm ‖ ⋅ ‖. Let𝑁 : 𝑋 → 𝑍 with

𝑁𝑢 =

[
[
[
[
[

[

𝑟
1
(𝑡) − 𝐴

1
(𝑡) 𝑒

𝑢
1

(𝑡)

+

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))

𝑟
2
(𝑡) − 𝐴

2
(𝑡) 𝑒

𝑢
2

(𝑡)

+

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝜂
𝑗

(𝑡))

−

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜎
𝑖

(𝑡))

]
]
]
]
]

]

= [

𝑔
1
(𝑡)

𝑔
2
(𝑡)

] for any 𝑢 ∈ 𝑋, (85)
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and define

𝐿𝑢 = 𝑢


; 𝑃𝑢 =

1

𝜔

∫

𝜔

0

𝑢 (𝑡) 𝑑𝑡, 𝑢 ∈ 𝑋;

𝑄𝑧 =

1

𝜔

∫

𝜔

0

𝑧 (𝑡) 𝑑𝑡, 𝑧 ∈ 𝑍.

(86)

It is not difficult to show that

Ker 𝐿 = {𝑢 ∈ 𝑋 | 𝑢 = ℎ ∈ 𝑅
2

} ,

Im 𝐿 = {𝑧 ∈ 𝑍 | ∫

𝜔

0

𝑧 (𝑠) 𝑑𝑠 = 0} ,

(87)

and dimKer𝐿 = 2 = codimIm𝐿. So, Im 𝐿 is closed in 𝑍,
and 𝐿 is a Fredholm mapping of index zero. It is trivial to
show that 𝑃, 𝑄 are continuous projectors such that Im𝑃 =

Ker 𝐿, Ker𝑄 = Im 𝐿 = Im(𝐼 − 𝑄). Furthermore, the
generalized inverse (to L)𝐾

𝑃
: Im 𝐿 → Ker𝑃∩Dom𝐿 exists

and is given by

𝐾
𝑃
𝑧 = ∫

𝑡

0

𝑧 (𝑠) 𝑑𝑠 −

1

𝜔

∫

𝜔

0

∫

𝑡

0

𝑧 (𝑠) 𝑑𝑠 𝑑𝑡. (88)

Thus, for 𝑢 ∈ 𝑋

𝑄𝑁𝑢 =
(

(

1

𝜔

∫

𝜔

0

[

[

𝑟
1
(𝑡) − 𝐴

1
(𝑡) 𝑒

𝑢
1

(𝑡)

+

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))]

]

𝑑𝑡

1

𝜔

∫

𝜔

0

[

[

𝑟
2
(𝑡) − 𝐴

2
(𝑡) 𝑒

𝑢
2

(𝑡)

+

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝜂
𝑗

(𝑡))

−

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜎
𝑖

(𝑡))]

]

𝑑𝑡

)

)

,

𝐾
𝑃
(𝐼 − 𝑄)𝑁𝑢 = (

∫

𝑡

0

𝑔
1
(𝜉) 𝑑𝜉

∫

𝑡

0

𝑔
2
(𝜉) 𝑑𝜉

) −(

1

𝜔

∫

𝜔

0

∫

𝑡

0

𝑔
1
(𝜉) 𝑑𝜉 𝑑𝑡

1

𝜔

∫

𝜔

0

∫

𝑡

0

𝑔
2
(𝜉) 𝑑𝜉 𝑑𝑡

) −(

(

𝑡

𝜔

−

1

2

)∫

𝜔

0

𝑔
1
(𝜉) 𝑑𝜉

(

𝑡

𝜔

−

1

2

)∫

𝜔

0

𝑔
2
(𝜉) 𝑑𝜉

) .

(89)

Clearly, 𝑄𝑁 and 𝐾
𝑃
(𝐼 − 𝑄)𝑁 are continuous. By applying

Ascoli-Arzela theorem, one can easily show that 𝑄𝑁(Ω),
𝐾
𝑃
(𝐼 −𝑄)𝑁(Ω) are relatively compact for any open bounded

setΩ ⊂ 𝑋. Moreover, 𝑄𝑁(Ω) is obviously bounded. Thus,𝑁
is 𝐿-compact onΩ for any open bounded setΩ ⊂ 𝑋. Now, we
reach the position to search for an appropriate open bounded
setΩ ⊂ 𝑋 for the application of Lemma 6. Corresponding to
the operating equation 𝐿𝑢 = 𝜆𝑁𝑢, 𝜆 ∈ (0, 1), we have

𝑢


1
(𝑡) = 𝜆[𝑟

1
(𝑡) − 𝐴

1
(𝑡) 𝑒

𝑢
1

(𝑡)

+

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))
]

]

,

𝑢


2
(𝑡) = 𝜆

[

[

𝑟
2
(𝑡) − 𝐴

2
(𝑡) 𝑒

𝑢
2

(𝑡)

+

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝜂
𝑗

(𝑡))

−

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜎
𝑖

(𝑡))

] .

(90)

Since 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢

2
(𝑡))

𝑇 is a 𝜔-periodic function, we need
only to prove the result in the interval [0, 𝜔]. Integrating (90)
over the interval [0, 𝜔] leads to the following:

∫

𝜔

0

[

[

𝑟
1
(𝑡) − 𝐴

1
(𝑡) 𝑒

𝑢
1

(𝑡)

+

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))
]

]

𝑑𝑡 = 0,

∫

𝜔

0

[

[

𝑟
2
(𝑡) − 𝐴

2
(𝑡) 𝑒

𝑢
2

(𝑡)

+

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝜂
𝑗

(𝑡))

−

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜎
𝑖

(𝑡))

]𝑑𝑡 = 0.

(91)

Hence, we have

∫

𝜔

0

[

[

𝐴
1
(𝑡) 𝑒

𝑢
1

(𝑡)

−

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

+

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))
]

]

𝑑𝑡 = 𝑟
1
𝜔,

∫

𝜔

0

[

[

𝐴
2
(𝑡) 𝑒

𝑢
2

(𝑡)

−

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝜂
𝑗

(𝑡))

+

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜎
𝑖

(𝑡))

]𝑑𝑡 = 𝑟
2
𝜔.

(92)
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Noting that 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢

2
(𝑡)) ∈ 𝑋, then there exists 𝜁

𝑙
, 𝜉

𝑙
∈

[0, 𝜔] (𝑙 = 1, 2) such that

𝑢
𝑙
(𝜁

𝑙
) = inf

𝑡∈[0,𝜔]

𝑢
𝑙
(𝑡) , 𝑢

𝑙
(𝜉

𝑙
) = sup

𝑡∈[0,𝜔]

𝑢
𝑙
(𝑡) , 𝑙 = 1, 2. (93)

Since 𝜏
𝑖
(𝑡) < 1, we can let 𝑠 = 𝑡 − 𝜏

𝑖
(𝑡), that is, 𝑡 = 𝛼

𝑖
(𝑠),

𝑖 = 1, 2, . . . , 𝑛, and then

∫

𝜔

0

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

𝑑𝑡 = ∫

𝜔−𝜏
𝑖

(𝜔)

−𝜏
𝑖

(0)

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

𝑒
𝑢
1

(𝑠)

𝑑𝑠.

(94)

According to Lemma 6, we know that ((𝐵
1𝑖
(𝛼

𝑖
(𝑠)))/(1 −

𝜏


𝑖
(𝛼

𝑖
(𝑠))))𝑒

𝑢
1

(𝑠)

∈ 𝐶
𝜔
. Thus,

∫

𝜔−𝜏
𝑖

(𝜔)

−𝜏
𝑖

(0)

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

𝑒
𝑢
1

(𝑠)

𝑑𝑠 = ∫

𝜔

0

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

𝑒
𝑢
1

(𝑠)

𝑑𝑠.

(95)

By (37) and (38), we have

∫

𝜔

0

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

𝑑𝑡 = ∫

𝜔

0

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

𝑒
𝑢
1

(𝑠)

𝑑𝑠. (96)

Similarly, we obtain

∫

𝜔

0

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))

𝑑𝑡 = ∫

𝜔

0

𝐶
1𝑗
(𝜇

𝑗
(𝑠))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑠))

𝑒
𝑢
2

(𝑠)

𝑑𝑠,

∫

𝜔

0

𝐵
2𝑗
(𝑡) 𝑒

𝑢
1

2(𝑡−𝜂
𝑗

(𝑡))

𝑑𝑡 = ∫

𝜔

0

𝐵
2𝑗
(]

𝑗
(𝑠))

1 − 𝜂


𝑗
(]

𝑗
(𝑠))

𝑒
𝑢
2

(𝑠)

𝑑𝑠,

∫

𝜔

0

𝐶
2𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜎
𝑖

(𝑡))

𝑑𝑡 = ∫

𝜔

0

𝐶
2𝑖
(𝛽

𝑖
(𝑠))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝑠))

𝑒
𝑢
1

(𝑠)

𝑑𝑠.

(97)

It follows from (92), (96), and (97) that we get

∫

𝜔

0

[(𝐴
1
(𝑠) −

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

) 𝑒
𝑢
1

(𝑠)

+

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝜇

𝑗
(𝑠))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑠))

𝑒
𝑢
2

(𝑠)
]

]

𝑑𝑠 = 𝑟
1
𝜔,

∫

𝜔

0

[

[

(𝐴
2
(𝑠) −

𝑚

∑

𝑗=1

𝐵
2𝑗
(]

𝑗
(𝑠))

1 − 𝜂


𝑗
(]

𝑗
(𝑠))

) 𝑒
𝑢
2

(𝑠)

+

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝛽

𝑖
(𝑠))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝑠))

𝑒
𝑢
1

(𝑠)
]

]

𝑑𝑠 = 𝑟
2
𝜔.

(98)

Thus from (98) we get

∫

𝜔

0

𝐹
1
(𝑠) 𝑒

𝑢
1

(𝑠)

𝑑𝑠 + ∫

𝜔

0

𝐺
1
(𝑠) 𝑒

𝑢
2

(𝑠)

𝑑𝑠 = 𝑟
1
𝜔,

∫

𝜔

0

𝐹
2
(𝑠) 𝑒

𝑢
2

(𝑠)

𝑑𝑠 + ∫

𝜔

0

𝐺
2
(𝑠) 𝑒

𝑢
1

(𝑠)

𝑑𝑠 = 𝑟
2
𝜔.

(99)

where 𝐹
1
(𝑠), 𝐹

2
(𝑠), 𝐺

1
(𝑠), and 𝐺

2
(𝑠) are defined by (22). On

the other hand, by Lemma 6, we can see that𝛼
𝑖
(𝜔) = 𝛼

𝑖
(0)+𝜔,

so we can derive

∫

𝜔

0

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

𝑑𝑠 = ∫

𝛼
𝑖

(𝜔)

𝛼
𝑖

(0)

𝐵
1𝑖
(𝑡) ( 1 − 𝜏



𝑖
(𝛼

𝑖
(𝑡))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑡))

𝑑𝑡

= ∫

𝜔

0

𝐵
1𝑖
(𝑡) 𝑑𝑡 = 𝐵

1𝑖
𝜔.

(100)

Thus, from (99) and (100), we get

𝐹
1
𝜔 = ∫

𝜔

0

𝐹
1
(𝑠) 𝑑𝑠 = ∫

𝜔

0

[𝐴
1
(𝑠) −

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

] 𝑑𝑠

= (𝐴
1
−

𝑛

∑

𝑖=1

𝐵
1𝑖
)𝜔,

𝐹
2
𝜔 = ∫

𝜔

0

𝐹
2
(𝑠) 𝑑𝑠 = ∫

𝜔

0

[

[

𝐴
2
(𝑠) −

𝑛

∑

𝑖=1

𝐵
2𝑗
(]

𝑗
(𝑠))

1 − 𝜂


𝑗
(]

𝑗
(𝑠))

]

]

𝑑𝑠

= (𝐴
2
−

𝑛

∑

𝑖=1

𝐵
2𝑗
)𝜔,

𝐺
1
𝜔 = ∫

𝜔

0

𝐺
1
(𝑠) 𝑑𝑠 = ∫

𝜔

0

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝜇

𝑗
(𝑠))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑠))

𝑑𝑠

=

𝑚

∑

𝑗=1

𝐶
1𝑗
𝜔,

𝐺
2
𝜔 = ∫

𝜔

0

𝐺
2
(𝑠) 𝑑𝑠 = ∫

𝜔

0

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝛽

𝑖
(𝑠))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝑠))

𝑑𝑠

=

𝑛

∑

𝑖=1

𝐶
2𝑖
𝜔.

(101)

By (99), on one hand, we have

𝐺
𝐿

1
∫

𝜔

0

𝑒
𝑢
2

(𝑠)

𝑑𝑠 ≤ ∫

𝜔

0

𝐺
1
(𝑠) 𝑒

𝑢
2

(𝑠)

𝑑𝑠 ≤ 𝑟
1
𝜔,

𝐺
𝐿

2
∫

𝜔

0

𝑒
𝑢
1

(𝑠)

𝑑𝑠 ≤ ∫

𝜔

0

𝐺
2
(𝑠) 𝑒

𝑢
1

(𝑠)

𝑑𝑠 ≤ 𝑟
2
𝜔,

(102)

which implies that

∫

𝜔

0

𝑒
𝑢
2

(𝑠)

𝑑𝑠 ≤

𝑟
1
𝜔

𝐺
𝐿

1

,

∫

𝜔

0

𝑒
𝑢
1

(𝑠)

𝑑𝑠 ≤

𝑟
2
𝜔

𝐺
𝐿

2

.

(103)

On the other hand, by (99) the integral mean value theorem
that there is 𝜆

1
, 𝜆

2
, 𝜌

1
, and 𝜌

2
∈ [0, 𝜔] such that

𝐹
1
(𝜆

1
) ∫

𝜔

0

𝑒
𝑢
1

(𝑠)

𝑑𝑠 + 𝐺
1
(𝜌

1
) ∫

𝜔

0

𝑒
𝑢
2

(𝑠)

𝑑𝑠 = 𝑟
1
𝜔,

𝐹
2
(𝜆

2
) ∫

𝜔

0

𝑒
𝑢
2

(𝑠)

𝑑𝑠 + 𝐺
2
(𝜌

2
) ∫

𝜔

0

𝑒
𝑢
1

(𝑠)

𝑑𝑠 = 𝑟
2
𝜔.

(104)
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By (𝐻
7
), we have 𝐺𝐿

1
𝐺
𝐿

2
> 𝐹

𝑀

1
𝐹
𝑀

2
, which together with (104),

lead to the following:

∫

𝜔

0

𝑒
𝑢
2

(𝑠)

𝑑𝑠 =

𝑟
1
𝜔𝐺

2
(𝜌

2
) − 𝑟

2
𝜔𝐹

1
(𝜆

1
)

𝐺
1
(𝜌

1
) 𝐺

2
(𝜌

2
) − 𝐹

1
(𝜆

1
) 𝐹

2
(𝜆

2
)

≥

𝑟
1
𝜔𝐺

𝐿

2
− 𝑟

2
𝜔𝐹

𝑀

1

𝐺
𝑀

1
𝐺
𝑀

2
− 𝐹

𝐿

1
𝐹
𝐿

2

:= Γ
4
𝜔,

∫

𝜔

0

𝑒
𝑢
1

(𝑠)

𝑑𝑠 =

𝑟
2
𝜔𝐺

1
(𝜌

1
) − 𝑟

1
𝜔𝐹

2
(𝜆

2
)

𝐺
1
(𝜌

1
) 𝐺

2
(𝜌

2
) − 𝐹

1
(𝜆

1
) 𝐹

2
(𝜆

2
)

≥

𝑟
2
𝜔𝐺

𝐿

1
− 𝑟

1
𝜔𝐹

𝑀

2

𝐺
𝑀

1
𝐺
𝑀

2
− 𝐹

𝐿

1
𝐹
𝐿

2

:= Γ
3
𝜔.

(105)

Again, by (𝐻
7
), one can deduce that the following inequali-

ties:

𝑟
1
𝜔

𝐺
𝐿

1

≥

𝑟
1
𝜔𝐺

𝐿

2
− 𝑟

2
𝜔𝐹

𝑀

1

𝐺
𝑀

1
𝐺
𝑀

2
− 𝐹

𝐿

1
𝐹
𝐿

2

:= Γ
4
𝜔 > 0,

𝑟
2
𝜔

𝐺
𝐿

2

≥

𝑟
2
𝜔𝐺

𝐿

1
− 𝑟

1
𝜔𝐹

𝑀

2

𝐺
𝑀

1
𝐺
𝑀

2
− 𝐹

𝐿

1
𝐹
𝐿

2

:= Γ
3
𝜔 > 0.

(106)

It follows from (103), (105), and (106) that

Γ
4
𝜔 ≤ ∫

𝜔

0

𝑒
𝑢
2

(𝑠)

𝑑𝑠 ≤

𝑟
1
𝜔

𝐺
𝐿

1

,

Γ
3
𝜔 ≤ ∫

𝜔

0

𝑒
𝑢
1

(𝑠)

𝑑𝑠 ≤

𝑟
2
𝜔

𝐺
𝐿

2

,

(107)

which, together with (92) yield

Γ
4
≤ 𝑒

𝑢
2

(𝜁
2

)

, 𝑒
𝑢
2

(𝜉
2

)

≤

𝑟
1

𝐺
𝐿

1

,

Γ
3
≤ 𝑒

𝑢
1

(𝜁
1

)

, 𝑒
𝑢
1

(𝜉
1

)

≤

𝑟
2

𝐺
𝐿

2

,

(108)

which implies that

ln Γ
4
≤ 𝑢

2
(𝜉

2
) , 𝑢

2
(𝜁

2
) ≤ ln 𝑟

1

𝐺
𝐿

1

,

ln Γ
3
≤ 𝑢

1
(𝜉

1
) , 𝑢

1
(𝜁

1
) ≤ ln 𝑟

2

𝐺
𝐿

2

.

(109)

From the first equation of (90), we get

∫

𝜔

0






𝑢


1
(𝑡)






𝑑𝑡

= 𝜆∫

𝜔

0












𝑟
1
(𝑡) − 𝐴

1
(𝑡) 𝑒

𝑢
1

(𝑡)

+

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))













𝑑𝑡

≤ ∫

𝜔

0





𝑟
1
(𝑡)





𝑑𝑡

+ ∫

𝜔

0

[𝐴
1
(𝑡) 𝑒

𝑢
1

(𝑡)

+

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) 𝑒

𝑢
1

(𝑡−𝜏
𝑖

(𝑡))

+

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) 𝑒

𝑢
2

(𝑡−𝛿
𝑗

(𝑡))
]

]

𝑑𝑡

= ∫

𝜔

0





𝑟
1
(𝑡)





𝑑𝑡

+ ∫

𝜔

0

[𝐴
1
(𝑠) 𝑒

𝑢
1

(𝑠)

+

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

𝑒
𝑢
1

(𝑠)

+

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝜇

𝑗
(𝑠))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑠))

𝑒
𝑢
2

(𝑠)
]

]

𝑑𝑠

= ∫

𝜔

0





𝑟
1
(𝑡)





𝑑𝑡

+ ∫

𝜔

0

[(𝐴
1
(𝑠) +

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝛼

𝑖
(𝑠))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑠))

) 𝑒
𝑢
1

(𝑠)

+

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝜇

𝑗
(𝑠))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑠))

𝑒
𝑢
2

(𝑠)
]

]

𝑑𝑠

= ∫

𝜔

0





𝑟
1
(𝑡)





𝑑𝑡

+ ∫

𝜔

0

[𝐹
∗

1
(𝑠) 𝑒

𝑢
1

(𝑠)

+ 𝐺
1
(𝑠) 𝑒

𝑢
2

(𝑠)

] 𝑑𝑠

≤ 𝑅
1
𝜔 + 𝐹

∗𝑀

1
∫

𝜔

0

𝑒
𝑢
1

(𝑠)

𝑑𝑠 + 𝐺
𝑀

1
∫

𝜔

0

𝑒
𝑢
2

(𝑠)

𝑑𝑠,

(110)

where 𝑅
1

= (1/𝜔) ∫

𝜔

0

|𝑟
1
(𝑡)|𝑑𝑡, 𝐹∗

1
(𝑠), 𝐺

1
(𝑠) are defined by

(22). By (103) and (110), we obtain

∫

𝜔

0






𝑢


1
(𝑡)






𝑑𝑡 ≤ 𝑅

1
𝜔 + 𝐹

∗𝑀

1

𝑟
2
𝜔

𝐺
𝐿

2

+ 𝐺
𝑀

1

𝑟
1
𝜔

𝐺
𝐿

1

:= Δ
3
. (111)

Similarly, by the second equation of (90), we get

∫

𝜔

0






𝑢


2
(𝑡)






𝑑𝑡 ≤ 𝑅

2
𝜔 + 𝐹

∗𝑀

2

𝑟
1
𝜔

𝐺
𝐿

1

+ 𝐺
𝑀

2

𝑟
2
𝜔

𝐺
𝐿

2

:= Δ
4
, (112)
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where 𝑅
2
= (1/𝜔) ∫

𝜔

0

|𝑟
2
(𝑡)|𝑑𝑡, 𝐹∗

2
(𝑠), 𝐺

2
(𝑠) are defined by

(22). From (109), (111), and (112) and Lemma 10, it follows that
for 𝑡 ∈ [0, 𝜔]

𝑢
1
(𝑡) ≤ 𝑢

1
(𝜁

1
) +

1

2

∫

𝜔

0






𝑢


1
(𝑡)






𝑑𝑡 ≤ ln 𝑟

2

𝐺
𝐿

2

+

1

2

Δ
3
,

𝑢
2
(𝑡) ≤ 𝑢

2
(𝜁

1
) +

1

2

∫

𝜔

0






𝑢


2
(𝑡)






𝑑𝑡 ≤ ln 𝑟

1

𝐺
𝐿

1

+

1

2

Δ
4
,

(113)

𝑢
1
(𝑡) ≥ 𝑢

1
(𝜉

1
) −

1

2

∫

𝜔

0






𝑢


1
(𝑡)






𝑑𝑡 ≥ ln Γ

1
−

1

2

Δ
3
,

𝑢
2
(𝑡) ≥ 𝑢

2
(𝜉

1
) −

1

2

∫

𝜔

0






𝑢


2
(𝑡)






𝑑𝑡 ≥ ln Γ

2
−

1

2

Δ
4
.

(114)

Let

𝑅
3
= max{











ln 𝑟
2

𝐺
𝐿

2

+

1

2

Δ
3











,









ln Γ
3
−

1

2

Δ
3









} ,

𝑅
4
= max{











ln 𝑟
1

𝐺
𝐿

1

+

1

2

Δ
4











,









ln Γ
4
−

1

2

Δ
4









} .

(115)

It follows from (113)–(115) that

sup
𝑡∈[0,𝜔]





𝑢
1
(𝑡)





≤ 𝑅

3
,

sup
𝑡∈[0,𝜔]





𝑢
2
(𝑡)





≤ 𝑅

4
.

(116)

Clearly, Γ
𝑙
, Δ

𝑙
, 𝑅

𝑙
(𝑙 = 3, 4) are independent of 𝜆, respectively.

Note that ∫𝜔
0

𝐹
𝑙
(𝑡)𝑑𝑡 ≤ 𝐹

𝑀

𝑙
𝜔, ∫𝜔

0

𝐺
𝑙
(𝑡)𝑑𝑡 ≤ 𝐺

𝐿

𝑙
𝜔, 𝑙 = 1, 2. From

(44), we have

𝐴
1
−

𝑛

∑

𝑖=1

𝐵
1𝑖
= 𝐹

1
≤ 𝐹

𝑀

1
, 𝐺

𝐿

1
≤ 𝐺

1
=

𝑚

∑

𝑗=1

𝐶
1𝑗
;

𝐴
2
−

𝑚

∑

𝑗=1

𝐵
2𝑗
= 𝐹

2
≤ 𝐹

𝑀

2
, 𝐺

𝐿

2
≤ 𝐺

2
=

𝑛

∑

𝑖=1

𝐶
2𝑖
,

(117)

which deduces that

𝑟
1
(𝐴

1
−

𝑛

∑

𝑖=1

𝐵
1𝑖
) = 𝑟

1
𝐹
1
≤ 𝑟

1
𝐹
𝑀

1

< 𝑟
2
𝐺
𝐿

2
≤ 𝑟

2
𝐺
2
= 𝑟

2

𝑛

∑

𝑖=1

𝐶
2𝑖
;

𝑟
2
(𝐴

2
−

𝑚

∑

𝑗=1

𝐵
2𝑗
) = 𝑟

2
𝐹
2
≤ 𝑟

2
𝐹
𝑀

2

< 𝑟
1
𝐺
𝐿

1
≤ 𝑟

1
𝐺
1
= 𝑟

1

𝑚

∑

𝑗=1

𝐶
1𝑗
,

(118)

which implies that

𝑟
1
(𝐴

1
−

𝑛

∑

𝑖=1

𝐵
1𝑖
) ≤ 𝑟

2

𝑛

∑

𝑖=1

𝐶
2𝑖
;

𝑟
2
(𝐴

2
−

𝑚

∑

𝑗=1

𝐵
2𝑗
) ≤ 𝑟

1

𝑚

∑

𝑗=1

𝐶
1𝑗
.

(119)

Hence

(𝐴
1
−

𝑛

∑

𝑖=1

𝐵
1𝑖
)(𝐴

2
−

𝑚

∑

𝑗=1

𝐵
2𝑗
) ≤

𝑚

∑

𝑗=1

𝐶
1𝑗

𝑛

∑

𝑖=1

𝐶
2𝑖
. (120)

From (119) and (120), it is easy to show that the system of
algebraic equations

𝑟
1
− (𝐴

1
−

𝑛

∑

𝑖=1

𝐵
1𝑖
)𝑒

𝑢
1

−

𝑚

∑

𝑗=1

𝐶
1𝑗
𝑒
𝑢
2

= 0,

𝑟
2
− (𝐴

2
−

𝑚

∑

𝑗=1

𝐵
2𝑗
)𝑒

𝑢
2

−

𝑛

∑

𝑖=1

𝐶
2𝑖
𝑒
𝑢
1

= 0

(121)

has a unique solution (𝑢
∗

1
, 𝑢

∗

2
) ∈ 𝑅

2. In view of (116), we can
take sufficiently large 𝑅 such that 𝑅 > 𝑅

3
+𝑅

4
, 𝑅 > |𝑢

∗

1
| + |𝑢

∗

2
|

and define Ω = {𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢

2
(𝑡))

𝑇

∈ 𝑋 : ‖𝑢‖ < 𝑅}, and
it is clear that Ω satisfies condition (a) of Lemma 7. Letting
𝑢 ∈ 𝜕Ω ∩ Ker 𝐿 = 𝜕Ω ∩ 𝑅

2, then 𝑢 is a constant vector in 𝑅
2

with ‖𝑢‖ = 𝑅. Then

𝑄𝑁𝑢 = (

𝑟
1
− (𝐴

1
−

𝑛

∑

𝑖=1

𝐵
1𝑖
)𝑒

𝑢
1

−

𝑚

∑

𝑗=1

𝐶
1𝑗
𝑒
𝑢
2

𝑟
2
− (𝐴

2
−

𝑚

∑

𝑗=1

𝐵
2𝑗
)𝑒

𝑢
2

−

𝑛

∑

𝑖=1

𝐶
2𝑖
𝑒
𝑢
1

),

̸= 0.

(122)

That is, condition (b) of Lemma 7 holds. In order to verify
condition (c) in the Lemma 7, by (120) and the formula for
Brouwer degree, a straightforward calculation shows that

deg {𝐽𝑄𝑁𝑢,Ker 𝐿 ∩ 𝜕Ω, 0}

= sign
{

{

{

(

𝑚

∑

𝑗=1

𝐶
1𝑗

𝑛

∑

𝑖=1

𝐶
2𝑖
− (𝐴

1
−

𝑛

∑

𝑖=1

𝐵
1𝑖
)

× (𝐴
2
−

𝑚

∑

𝑗=1

𝐵
2𝑗
))𝑒

(𝑢
∗

1

+𝑢
∗

2

)
}

}

}

̸= 0.

(123)

By now we have proved that all requirements in Lemma 7
hold. Hence system (82) has at least one 𝜔-periodic solution,
say (𝑢

∗

1
, 𝑢

∗

2
)
𝑇. Setting 𝑦

∗

1
(𝑡) = 𝑒

𝑢
∗

1

(𝑡), 𝑦∗
2
(𝑡) = 𝑒

𝑢
∗

2

(𝑡), then
(𝑦

∗

1
(𝑡), 𝑦

∗

2
(𝑡))

𝑇 has at least one positive 𝜔-periodic solution
of systems (10) and (12). Furthermore, setting 𝑥

∗

1
(𝑡) =

∏
0<𝑡
𝑘

<𝑡
(1 + 𝜃

1𝑘
)𝑦

∗

1
(𝑡), 𝑥∗

2
(𝑡) = ∏

0<𝑡
𝑘

<𝑡
(1 + 𝜃

2𝑘
)𝑦

∗

2
(𝑡), then
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(𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇 has at least one positive 𝜔-periodic solution
of systems (2) and (4). If (𝐻

8
) holds, similarly we can prove

that systems (2) and (4) have at least one positive 𝜔-periodic
solution. The proof of Theorem 14 is complete.

We now proceed to the discussion on the uniqueness
and global stability of the 𝜔-periodic solution 𝑥

∗

(𝑡) in
Theorem 14. It is immediate that if 𝑥∗(𝑡) is globally asymp-
totically stable, then 𝑥

∗

(𝑡) is unique in fact.

Theorem 15. In addition to (𝐻
1
)–(𝐻

3
), assume further that

(𝐻
9
) 𝐹

𝐿

1
𝐹
𝐿

2
> 𝐺

𝑀

1
𝐺
𝑀

2
.

Then systems (2) and (4) have a unique positive 𝜔-
periodic solution 𝑥

∗

(𝑡) = (𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇 which is globally
asymptotically stable.

Proof. Letting 𝑥
∗

(𝑡) = (𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇 be a positive
𝜔-periodic solution of (2) and (4), then 𝑦

∗

(𝑡) =

(𝑦
∗

1
(𝑡), 𝑦

∗

2
(𝑡))

𝑇

(where 𝑦
∗

𝑙
(𝑡) = ∏

0<𝑡
𝑘

<𝑡
(1 + 𝜃

𝑙𝑘
)
−1

𝑥
∗

𝑙
(𝑡),

𝑙 = 1, 2) is the positive 𝜔-periodic solution of systems (10)
and (12), and let 𝑦

𝑙
(𝑡) = (𝑦

1
(𝑡), 𝑦

2
(𝑡))

𝑇 be any positive
solution of system (10) with the initial conditions (12). It
follows from Theorem 14 that there exist positive constants
𝑇, 𝑟

𝑙
, 𝑅

𝑙
, such that for all 𝑡 ≥ 𝑇

𝑟
𝑙
≤ 𝑦

∗

𝑙
(𝑡) ≤ 𝑅

𝑙
, 𝑙 = 1, 2. (124)

By the assumptions of Theorem 14, we can obtain 𝐹
𝐿

1
𝐹
𝐿

2
>

𝐺
𝑀

1
𝐺
𝑀

2
; then there exist constants 𝛼

3
> 0, 𝛼

4
> 0; we can

choose a positive constant 𝜀 such that

𝐹
𝐿

1
𝛼
3
− 𝐺

𝑀

2
𝛼
4
= 𝜀, 𝐹

𝐿

2
𝛼
4
− 𝐺

𝑀

1
𝛼
3
= 𝜀. (125)

In the following, we always assume that 𝛼
3
and 𝛼

4
satisfy (67).

We define

𝑉
1
(𝑡) = 𝛼

3





ln𝑦

1
(𝑡) − ln𝑦∗

1
(𝑡)





+ 𝛼

4





ln𝑦

2
(𝑡) − ln𝑦∗

2
(𝑡)





.

(126)

Calculating the upper right derivative of𝑉
1
(𝑡) along solutions

of (10), it follows that

𝐷
+

𝑉
1
(𝑡)

= 𝛼
3
(

̇𝑦
1
(𝑡)

𝑦
1
(𝑡)

−

̇𝑦
∗

1
(𝑡)

𝑦
∗

1
(𝑡)

) sgn (𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡))

+ 𝛼
4
(

̇𝑦
2
(𝑡)

𝑦
2
(𝑡)

−

̇𝑦
∗

2
(𝑡)

𝑦
∗

2
(𝑡)

) sgn (𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡))

≤ sgn (𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)) 𝛼

3

× { − 𝐴
1
(𝑡) (𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡))

+

𝑛

∑

𝑖=1

𝐵
1𝑖
(𝑡) (𝑦

1
(𝑡 − 𝜏

𝑖
(𝑡)) − 𝑦

∗

1
(𝑡 − 𝜏

𝑖
(𝑡)))

−

𝑚

∑

𝑗=1

𝐶
1𝑗
(𝑡) (𝑦

2
(𝑡 − 𝛿

𝑗
(𝑡))

−𝑦
∗

2
(𝑡 − 𝛿

𝑗
(𝑡)))}

+ sgn (𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)) 𝛼

4

×

{

{

{

− 𝐴
2
(𝑡) (𝑦

2
(𝑡) − 𝑦

∗

2
(𝑡))

+

𝑚

∑

𝑗=1

𝐵
2𝑗
(𝑡) (𝑦

2
(𝑡 − 𝜂

𝑗
(𝑡)) − 𝑦

∗

2
(𝑡 − 𝜂

𝑗
(𝑡)))

−

𝑛

∑

𝑖=1

𝐶
2𝑖
(𝑡) (𝑦

1
(𝑡 − 𝜎

𝑖
(𝑡))

−𝑦
∗

1
(𝑡 − 𝜎

𝑖
(𝑡)))

}

}

}

≤ −𝛼
3
𝐴

1
(𝑡)





𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






+

𝑛

∑

𝑖=1

𝛼
3
𝐵
1𝑖
(𝑡)





𝑦
1
(𝑡 − 𝜏

𝑖
(𝑡)) − 𝑦

∗

1
(𝑡 − 𝜏

𝑖
(𝑡))






+

𝑚

∑

𝑗=1

𝛼
3
𝐶
1𝑗
(𝑡)






𝑦
2
(𝑡 − 𝛿

𝑗
(𝑡)) − 𝑦

∗

2
(𝑡 − 𝛿

𝑗
(𝑡))







− 𝛼
4
𝐴

2
(𝑡)





𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)





+

𝑚

∑

𝑗=1

𝛼
4
𝐵
2𝑗
(𝑡)

×






𝑦
2
(𝑡 − 𝜂

𝑗
(𝑡)) − 𝑦

∗

2
(𝑡 − 𝜂

𝑗
(𝑡))







+

𝑛

∑

𝑖=1

𝛼
4
𝐶
2𝑖
(𝑡)





𝑦
1
(𝑡 − 𝜎

𝑖
(𝑡)) − 𝑦

∗

1
(𝑡 − 𝜎

𝑖
(𝑡))





.

(127)

We also define

𝑉
2
(𝑡) =

𝑛

∑

𝑖=1

𝛼
3
∫

𝑡

𝑡−𝜏
𝑖

(𝑡)

𝐵
1𝑖
(𝛼

𝑖
(𝜉))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝜉))





𝑦
1
(𝜉) − 𝑦

∗

1
(𝜉)





𝑑𝜉

+

𝑚

∑

𝑗=1

𝛼
3
∫

𝑡

𝑡−𝛿
𝑗

(𝑡)

𝐶
1𝑗
(𝜇

𝑗
(𝜉))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝜉))





𝑦
2
(𝜉) − 𝑦

∗

2
(𝜉)





𝑑𝜉

+

𝑚

∑

𝑗=1

𝛼
4
∫

𝑡

𝑡−𝜌
𝑗

(𝑡)

𝐵
2𝑗
(]

𝑗
(𝜉))

1 − 𝜌


𝑗
(]

𝑗
(𝜉))





𝑦
2
(𝜉) − 𝑦

∗

2
(𝜉)





𝑑𝜉

+

𝑛

∑

𝑖=1

𝛼
4
∫

𝑡

𝑡−𝜎
𝑖

(𝑡)

𝐶
2𝑖
(𝛽

𝑖
(𝜉))

1 − 𝜎


𝑗
(𝛽

𝑖
(𝜉))





𝑦
1
(𝜉) − 𝑦

∗

1
(𝜉)





𝑑𝜉.

(128)
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Calculating the upper right derivative of𝑉
2
(𝑡) along solutions

of (10), it follows that

𝐷
+

𝑉
2
(𝑡) =

𝑛

∑

𝑖=1

𝛼
3

𝐵
1𝑖
(𝛼

𝑖
(𝑡))

1 − 𝜏


𝑗
(𝛼

𝑖
(𝑡))





𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






−

𝑛

∑

𝑖=1

𝛼
1

𝐵
1𝑖
(𝑡)

1 − 𝜏


𝑗
(𝑡)

(1 − 𝜏


𝑗
(𝑡))

×




𝑦
1
(𝑡 − 𝜏

𝑖
(𝑡)) − 𝑦

∗

1
(𝑡 − 𝜏

𝑖
(𝑡))






+

𝑚

∑

𝑗=1

𝛼
3

𝐶
1𝑗
(𝜇

𝑗
(𝑡))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑡))





𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)






−

𝑚

∑

𝑗=1

𝛼
1

𝐶
1𝑗
(𝑡)

1 − 𝛿


𝑗
(𝑡)

(1 − 𝛿


𝑗
(𝑡))

×






𝑦
2
(𝑡 − 𝛿

𝑗
(𝑡)) − 𝑦

∗

2
(𝑡 − 𝛿

𝑗
(𝑡))







+

𝑚

∑

𝑗=1

𝛼
4

𝐵
2𝑗
(]

𝑗
(𝑡))

1 − 𝜂


𝑗
(]

𝑗
(𝑡))





𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)






−

𝑚

∑

𝑗=1

𝛼
1

𝐵
2𝑗
(𝑡)

1 − 𝜂


𝑗
(𝑡)

(1 − 𝜂


𝑗
(𝑡))

×






𝑦
2
(𝑡 − 𝜂

𝑗
(𝑡)) − 𝑦

∗

2
(𝑡 − 𝜂

𝑗
(𝑡))







+

𝑛

∑

𝑖=1

𝛼
4

𝐶
2𝑖
(𝛽

𝑖
(𝑡))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝑡))





𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






−

𝑛

∑

𝑖=1

𝛼
2

𝐶
2𝑖
(𝑡)

1 − 𝜎


𝑖
(𝑡)

(1 − 𝜎


𝑖
(𝑡))

×




𝑦
1
(𝑡 − 𝜎

𝑖
(𝑡)) − 𝑦

∗

1
(𝑡 − 𝜎

𝑖
(𝑡))





.

(129)

We define a Lyapunov functional 𝑉(𝑡) as follows:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) . (130)

Calculating the upper right derivative of𝑉(𝑡) along solutions
of (10), it follows that

𝐷
+

𝑉 (𝑡) = −𝛼
3
𝐴

1
(𝑡)





𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






+

𝑛

∑

𝑖=1

𝛼
3

𝐵
1𝑖
(𝛼

𝑖
(𝑡))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑡))





𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






+

𝑚

∑

𝑗=1

𝛼
1

𝐶
1𝑗
(𝜇

𝑗
(𝑡))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑡))





𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)






− 𝛼
4
𝐴

2
(𝑡)





𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)






+

𝑚

∑

𝑗=1

𝛼
4

𝐵
2𝑗
(]

𝑗
(𝑡))

1 − 𝜂


𝑗
(]

𝑗
(𝑡))





𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)






+

𝑛

∑

𝑖=1

𝛼
2

𝐶
2𝑖
(𝛽

𝑖
(𝑡))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝑡))





𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






= −[𝛼
3
𝐴

1
(𝑡) −

𝑛

∑

𝑖=1

𝛼
3

𝐵
1𝑖
(𝛼

𝑖
(𝑡))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝑡))

−

𝑛

∑

𝑖=1

𝛼
4

𝐶
2𝑖
(𝛽

𝑖
(𝑡))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝑡))

]




𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






−
[

[

𝛼
4
𝐴

2
(𝑡) −

𝑚

∑

𝑗=1

𝛼
1

𝐶
1𝑗
(𝜇

𝑗
(𝑡))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝑡))

−

𝑚

∑

𝑗=1

𝛼
4

𝐵
2𝑗
(]

𝑗
(𝑡))

1 − 𝜂


𝑗
(]

𝑗
(𝑡))

]

]





𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)






≤ (𝛼
3
𝐹
𝐿

1
− 𝛼

4
𝐺
𝑀

2
)




𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)






− (𝛼
4
𝐹
𝐿

2
− 𝛼

3
𝐺
𝑀

1
)




𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)






= −𝜀 (




𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)





+




𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)





) .

(131)

So by (131), we have

𝜀 ∫

𝑡

0

(




𝑦
1
(𝜉) − 𝑦

∗

1
(𝜉)





+




𝑦
2
(𝜉) − 𝑦

∗

2
(𝜉)





) 𝑑𝜉

+ 𝑉 (𝑡) ≤ 𝑉 (0) < +∞, 𝑡 ≥ 0,

(132)

where

𝑉 (0) = 𝛼
3





ln𝑦

1
(0) − ln𝑦∗

1
(0)





+ 𝛼

4





ln𝑦

2
(0) − ln𝑦∗

2
(0)






+

𝑛

∑

𝑖=1

𝛼
3
∫

0

−𝜏
𝑖

(0)

𝐵
1𝑖
(𝛼

𝑖
(𝜉))

1 − 𝜏


𝑖
(𝛼

𝑖
(𝜉))

×




𝑦
1
(𝜉) − 𝑦

∗

1
(𝜉)





𝑑𝜉

+

𝑚

∑

𝑗=1

𝛼
3
∫

0

−𝛿
𝑗

(0)

𝐶
1𝑗
(𝜇

𝑗
(𝜉))

1 − 𝛿


𝑗
(𝜇

𝑗
(𝜉))

×




𝑦
2
(𝜉) − 𝑦

∗

2
(𝜉)





𝑑𝜉 +

𝑚

∑

𝑗=1

𝛼
4

× ∫

0

−𝜌
𝑗

(0)

𝐵
2𝑗
(]

𝑗
(𝜉))

1 − 𝜌


𝑗
(]

𝑗
(𝜉))





𝑦
2
(𝜉) − 𝑦

∗

2
(𝜉)





𝑑𝜉

+

𝑛

∑

𝑖=1

𝛼
4
∫

0

−𝜎
𝑖

(0)

𝐶
2𝑖
(𝛽

𝑖
(𝜉))

1 − 𝜎


𝑖
(𝛽

𝑖
(𝜉))

×




𝑦
1
(𝜉) − 𝑦

∗

1
(𝜉)





𝑑𝜉,

(133)
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which implies that

∫

𝑡

0

(




𝑦
1
(𝜉) − 𝑦

∗

1
(𝜉)





+




𝑦
2
(𝜉) − 𝑦

∗

2
(𝜉)





) 𝑑𝜉 ≤

𝑉 (0)

𝜀

. (134)

By (134), it is obvious that |𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)| + |𝑦

2
(𝑡) − 𝑦

∗

2
(𝑡)| is

bounded.
On the other hand, we know that

𝛼
3





ln𝑦

1
(𝑡) − ln𝑦∗

1
(𝑡)





+ 𝛼

4





ln𝑦

2
(𝑡) − ln𝑦∗

2
(𝑡)






≤ 𝑉 (𝑡) ≤ 𝑉 (0) < +∞, 𝑡 ≥ 0,

(135)

which implies that





ln𝑦

1
(𝑡) − ln𝑦∗

1
(𝑡)





≤

𝑉 (0)

𝛼
3

,





ln𝑦

2
(𝑡) − ln𝑦∗

2
(𝑡)





≤

𝑉 (0)

𝛼
4

,

(136)

which, together with (123), yield

𝑟
1
𝑒
−𝑉(0)/𝛼

3

≤ 𝑦
1
(𝑡) ≤ 𝑅

1
𝑒
𝑉(0)/𝛼

3

< +∞,

𝑟
2
𝑒
−𝑉(0)/𝛼

4

≤ 𝑦
2
(𝑡) ≤ 𝑅

2
𝑒
𝑉(0)/𝛼

4

< +∞.

(137)

From (124) and (137), it follows that 𝑦
𝑙
(𝑡) (𝑙 = 1, 2) are

bounded for 𝑡 ≥ 0. Hence, 𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡), 𝑦

2
(𝑡) − 𝑦

∗

2
(𝑡), and

their derivatives remain bounded on [0, +∞). So |𝑦
1
(𝑡) −

𝑦
∗

1
(𝑡)|, |𝑦

2
(𝑡) − 𝑦

∗

2
(𝑡)| are uniformly continuous on [0, +∞).

By Lemma 11, we have

lim
𝑡→+∞





𝑦
𝑙
(𝑠) − 𝑦

∗

𝑙
(𝑠)






= lim
𝑡→+∞

[ ∏

0<𝑡
𝑘

<𝑡

(1 + 𝜃
𝑖𝑘
)
−1 



𝑥
∗

𝑙
(𝑠) − 𝑥

𝑙
(𝑠)





] = 0,

𝑙 = 1, 2.

(138)

Therefore

lim
𝑡→+∞





𝑥
𝑙
(𝑠) − 𝑥

∗

𝑙
(𝑠)





= 0, 𝑙 = 1, 2. (139)

By Theorems 7.4 and 8.2 in [30], we know that the periodic
positive solution 𝑥

∗

(𝑡) = (𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇 is uniformly asymp-
totically stable. The proof of Theorem 15 is completed.

4. Applications

In this section, for some applications of our main results, we
will consider some special cases of systems (2) and (3), which
have been investigated extensively in [10].

Application 1. consider the following equations:

𝑦


1
(𝑡) = 𝑦

1
(𝑡) [𝑟

1
(𝑡) − 𝑎

1
(𝑡) 𝑦

1
(𝑡) +

𝑛

∑

𝑖=1

𝑏
1𝑖
(𝑡) 𝑦

1
(𝑡 − 𝜏

𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝑡) 𝑦

2
(𝑡 − 𝜌

𝑗
(𝑡))

]

]

,

𝑦


2
(𝑡) = 𝑦

2
(𝑡)

[

[

𝑟
2
(𝑡) − 𝑎

2
(𝑡) 𝑦

2
(𝑡) +

𝑚

∑

𝑗=1

𝑏
2𝑗
(𝑡) 𝑦

2
(𝑡 − 𝜂

𝑗
(𝑡))

−

𝑛

∑

𝑖=1

𝑐
2𝑖
(𝑡) 𝑦

1
(𝑡 − 𝜎

𝑖
(𝑡))] ,

𝑦
𝑖
(0) > 0, 𝑖 = 1, 2,

(140)

𝑦


1
(𝑡) = 𝑦

1
(𝑡) [𝑟

1
(𝑡) − 𝑎

1
(𝑡) 𝑦

1
(𝑡) −

𝑛

∑

𝑖=1

𝑏
1𝑖
(𝑡) 𝑦

1
(𝑡 − 𝜏

𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝑡) 𝑦

2
(𝑡 − 𝜌

𝑗
(𝑡))

]

]

,

𝑦


2
(𝑡) = 𝑦

2
(𝑡)

[

[

𝑟
2
(𝑡) − 𝑎

2
(𝑡) 𝑦

2
(𝑡) −

𝑚

∑

𝑗=1

𝑏
2𝑗
(𝑡) 𝑦

2
(𝑡 − 𝜂

𝑗
(𝑡))

−

𝑛

∑

𝑖=1

𝑐
2𝑖
(𝑡) 𝑦

1
(𝑡 − 𝜎

𝑖
(𝑡))] ,

𝑦
𝑖
(0) > 0, 𝑖 = 1, 2,

(141)

which are special cases of systems (2) and (3)without impulse,
respectively. By applyingTheorems 12–15 to systems (140) and
(141), respectively, we obtain the following theorems.

Theorem 16. In addition to (𝐻
1
), assume that the following

conditions hold:

(𝐻
10
) 𝑟

1
𝐹
𝐿

1
> 𝑟

2
𝐺
𝑀

2
, 𝑟

2
𝐹
𝐿

2
> 𝑟

1
𝐺
𝑀

1
.

Then system (140) has a unique positive𝜔-periodic solution
𝑥
∗

(𝑡) = (𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇 which is globally asymptotically stable,
where 𝐹

1
(𝑡), 𝐹

2
(𝑡), 𝐺

1
(𝑡), and 𝐺

2
(𝑡) are defined in (22).

Proof. It is similar to the proof of Theorems 12 and 13, so we
omit the details here.

Theorem 17. In addition to (𝐻
1
), assume further that

(𝐻
11
) 𝑟

1
𝐹
∗𝐿

1
> 𝑟

2
𝐺
𝑀

2
, 𝑟

2
𝐹
∗𝐿

2
> 𝑟

1
𝐺
𝑀

1
.
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Then system (140) has a unique positive𝜔-periodic solution
𝑥
∗

(𝑡) = (𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇 which is globally asymptotically stable,
where 𝐹∗

1
(𝑡), 𝐹∗

2
(𝑡), 𝐺

1
(𝑡), and 𝐺

2
(𝑡) are defined in (22).

Proof. It is similar to the proof of Theorems 14 and 15, so we
omit the details here.

We consider the following systems:

𝑥


(𝑡) = 𝑥 (𝑡) [𝑟 (𝑡) − 𝑎 (𝑡) 𝑥 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡))] ,

(142)

𝑥


(𝑡) = 𝑥 (𝑡) [𝑟 (𝑡) − 𝑎 (𝑡) 𝑥 (𝑡) −

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡))] ,

(143)

which are special cases of systems (140) and (141), respectively.
From Theorems 17 and 18, we have the following corollary.

Corollary 18. In addition to (𝐻
1
), assume that the following

condition holds:

(𝐻
12
) 𝑎(𝑡) −

𝑛

∑

𝑖=1

(𝑏
𝑖
(𝜇

𝑖
(𝑡)))/(1 − 𝜏



𝑖
(𝜇

𝑖
(𝑡))) > 0.

Then systems (142) and (143) have a unique positive 𝜔-
periodic solution 𝑥

∗

(𝑡) which is globally asymptotically stable,
where 𝜇

𝑖
(𝑡) are the inverses of functions 𝑡 − 𝜏

𝑖
(𝑡).

Proof. It is similar to the proof of Theorems 12 and 13, so we
omit the details here.
Application 2. Let us consider two delayed two-species com-
petitive systems:

𝑦


1
(𝑡) = 𝑦

1
(𝑡) [𝑟

1
(𝑡) − 𝑎

1
(𝑡) 𝑦

1
(𝑡)

+ 𝑏
1
(𝑡) 𝑦

1
(𝑡 − 𝜏 (𝑡)) −𝑐

1
(𝑡) 𝑦

2
(𝑡 − 𝛿 (𝑡))] ,

𝑦


2
(𝑡) = 𝑦

2
(𝑡) [𝑟

2
(𝑡) − 𝑎

2
(𝑡) 𝑦

2
(𝑡)

+ 𝑏
2
(𝑡) 𝑦

2
(𝑡 − 𝜂 (𝑡)) −𝑐

2
(𝑡) 𝑦

1
(𝑡 − 𝜎 (𝑡))] ,

𝑦
𝑖
(0) > 0, 𝑖 = 1, 2,

(144)

𝑦


1
(𝑡) = 𝑦

1
(𝑡) [𝑟

1
(𝑡) − 𝑎

1
(𝑡) 𝑦

1
(𝑡)

− 𝑏
1
(𝑡) 𝑦

1
(𝑡 − 𝜏 (𝑡)) −𝑐

1
(𝑡) 𝑦

2
(𝑡 − 𝛿 (𝑡))] ,

𝑦


2
(𝑡) = 𝑦

2
(𝑡) [𝑟

2
(𝑡) − 𝑎

2
(𝑡) 𝑦

2
(𝑡)

− 𝑏
2
(𝑡) 𝑦

2
(𝑡 − 𝜂 (𝑡)) −𝑐

2
(𝑡) 𝑦

1
(𝑡 − 𝜎 (𝑡))] ,

𝑦
𝑖
(0) > 0, 𝑖 = 1, 2,

(145)

which are special cases of systems (2) and (3) without impulse
and 𝑖 = 𝑗 = 1, respectively. By applying Theorems 12–15 to
systems (144) and (145), respectively, we obtain the following
theorems.

Theorem 19. In addition to (𝐻
1
), assume that the following

conditions hold:
(𝐻

12
) 𝑟

1
𝐶
𝐿

1
> 𝑟

2
𝐷

𝑀

2
, 𝑟

2
𝐶
𝐿

2
> 𝑟

1
𝐷

𝑀

1
.

Then system (144) has a unique positive𝜔-periodic solution
𝑥
∗

(𝑡) = (𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇 which is globally asymptotically stable,
where 𝐶

1
(𝑡), 𝐶

2
(𝑡), 𝐷

1
(𝑡), are𝐷

2
(𝑡) are defined as follow:

𝐶
1
(𝑡) = 𝑎

1
(𝑡) −

𝑏
1
(𝛼 (𝑡))

1 − 𝜏

(𝛼 (𝑡))

, 𝐷
1
(𝑡) =

𝐶
1
(𝜇 (𝑡))

1 − 𝛿

(𝜇 (𝑡))

,

𝐶
2
(𝑡) = 𝑎

2
(𝑡) −

𝑏
2
(] (𝑡))

1 − 𝜂

(] (𝑡))

, 𝐷
2
(𝑡) =

𝐶
2
(𝛽 (𝑡))

1 − 𝜎

(𝛽 (𝑡))

.

(146)

And 𝛼(𝑡), 𝛽(𝑡), 𝜇(𝑡), and ](𝑡) represent the inverse function of
𝑡 − 𝜏(𝑡), 𝑡 − 𝜎(𝑡), 𝑡 − 𝛿(𝑡), and 𝑡 − 𝜂(𝑡), respectively.

Proof. It is similar to the proof of Theorems 12 and 13, so we
omit the details here.

Theorem 20. In addition to (𝐻
1
), assume further that

(𝐻
13
) 𝑟

1
𝐶
∗𝐿

1
> 𝑟

2
𝐷

𝑀

2
, 𝑟

2
𝐶
∗𝐿

2
> 𝑟

1
𝐺
𝑀

1
.

Then system (145) has a unique positive𝜔-periodic solution
𝑥
∗

(𝑡) = (𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡))

𝑇 which is globally asymptotically stable,
where 𝐶∗

1
(𝑡), 𝐶∗

2
(𝑡), 𝐷

1
(𝑡), and 𝐷

2
(𝑡) are defined as follow:

𝐶
∗

1
(𝑡) = 𝑎

1
(𝑡) +

𝑏
1
(𝛼 (𝑡))

1 − 𝜏

(𝛼 (𝑡))

, 𝐷
1
(𝑡) =

𝐶
1
(𝜇 (𝑡))

1 − 𝛿

(𝜇 (𝑡))

,

𝐶
∗

2
(𝑡) = 𝑎

2
(𝑡) +

𝑏
2
(] (𝑡))

1 − 𝜂

(] (𝑡))

, 𝐷
2
(𝑡) =

𝐶
2
(𝛽 (𝑡))

1 − 𝜎

(𝛽 (𝑡))

.

(147)

And 𝛼(𝑡), 𝛽(𝑡), 𝜇(𝑡), and ](𝑡) represent the inverse function of
𝑡 − 𝜏(𝑡), 𝑡 − 𝜎(𝑡), 𝑡 − 𝛿(𝑡), and 𝑡 − 𝜂(𝑡), respectively.

Proof. It is similar to the proof of Theorems 14 and 15, so we
omit the details here.
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