6,752 research outputs found
Effective SU(2)_L x U(1) theory and the Higgs boson mass
We assume the stability of vacuum under radiative corrections in the context
of the standard electroweak theory. We find that this theory behaves as a good
effective model already at cut off energy scales as low as 0.7 TeV. This
stability criterion allows to predict m_H= 318 +- 13 GeV for the Higgs boson
mass.Comment: Latex, 5 pages, 1 Postscript figure include
Financial rogue waves
The financial rogue waves are reported analytically in the nonlinear option
pricing model due to Ivancevic, which is nonlinear wave alternative of the
Black-Scholes model. These solutions may be used to describe the possible
physical mechanisms for rogue wave phenomenon in financial markets and related
fields.Comment: 4 papges, 2 figures, Final version accepted in Commun. Theor. Phys.,
201
Lung penetration, bronchopulmonary pharmacokinetic/pharmacodynamic profile and safety of 3 g of ceftolozane/tazobactam administered to ventilated, critically ill patients with pneumonia
Objectives: Ceftolozane/tazobactam is approved for hospital-acquired/ventilator-associated bacterial pneumonia at double the dose (i.e. 2 g/1 g) recommended for other indications. We evaluated the bronchopulmonary pharmacokinetic/pharmacodynamic profile of this 3 g ceftolozane/tazobactam regimen in ventilated pneumonia patients.
Methods: This was an open-label, multicentre, Phase 1 trial (clinicaltrials.gov: NCT02387372). Mechanically ventilated patients with proven/suspected pneumonia received four to six doses of 3 g of ceftolozane/tazobactam (adjusted for renal function) q8h. Serial plasma samples were collected after the first and last doses. One bronchoalveolar lavage sample per patient was collected at 1, 2, 4, 6 or 8 h after the last dose and epithelial lining fluid (ELF) drug concentrations were determined. Pharmacokinetic parameters were estimated by noncompartmental analysis and pharmacodynamic analyses were conducted to graphically evaluate achievement of target exposures (plasma and ELF ceftolozane concentrations >4 mg/L and tazobactam concentrations >1 mg/L; target in plasma: similar to 30% and similar to 20% of the dosing interval, respectively).
Results: Twenty-six patients received four to six doses of study drug; 22 were included in the ELF analyses. Ceftolozane and tazobactam T-max (6 and 2 h, respectively) were delayed in ELF compared with plasma (1h). Lung penetration, expressed as the ratio of mean drug exposure (AUC) in ELF to plasma, was 50% (ceftolozane) and 62% (tazobactam). Mean ceftolozane and tazobactam ELF
concentrations remained >4 mg/L and >1mg/L, respectively, for 100% of the dosing interval. Therewere no deaths or adverse event-related study discontinuations. Conclusions: In ventilated pneumonia patients, 3 g of ceftolozane/tazobactam q8h yielded ELF exposures considered adequate to cover ceftolozane/tazobactam-susceptible respiratory pathogens
Optically Thin Metallic Films for High-radiative-efficiency Plasmonics
Plasmonics enables deep-subwavelength concentration of light and has become
important for fundamental studies as well as real-life applications. Two major
existing platforms of plasmonics are metallic nanoparticles and metallic films.
Metallic nanoparticles allow efficient coupling to far field radiation, yet
their synthesis typically leads to poor material quality. Metallic films offer
substantially higher quality materials, but their coupling to radiation is
typically jeopardized due to the large momentum mismatch with free space. Here,
we propose and theoretically investigate optically thin metallic films as an
ideal platform for high-radiative-efficiency plasmonics. For far-field
scattering, adding a thin high-quality metallic substrate enables a higher
quality factor while maintaining the localization and tunability that the
nanoparticle provides. For near-field spontaneous emission, a thin metallic
substrate, of high quality or not, greatly improves the field overlap between
the emitter environment and propagating surface plasmons, enabling high-Purcell
(total enhancement > ), high-quantum-yield (> 50 %) spontaneous emission,
even as the gap size vanishes (35 nm). The enhancement has almost
spatially independent efficiency and does not suffer from quenching effects
that commonly exist in previous structures.Comment: Supporting Information not included but freely available from
DOI:10.1021/acs.nanolett.6b0085
Intelectin contributes to allergen-induced IL-25, IL-33, and TSLP expression and type 2 response in asthma and atopic dermatitis.
The epithelial and epidermal innate cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) have pivotal roles in the initiation of allergic inflammation in asthma and atopic dermatitis (AD). However, the mechanism by which the expression of these innate cytokines is regulated remains unclear. Intelectin (ITLN) is expressed in airway epithelial cells and promotes allergic airway inflammation. We hypothesized that ITLN is required for allergen-induced IL-25, IL-33, and TSLP expression. In two asthma models, Itln knockdown reduced allergen-induced increases in Il-25, Il-33, and Tslp and development of type 2 response, eosinophilic inflammation, mucus overproduction, and airway hyperresponsiveness. Itln knockdown also inhibited house dust mite (HDM)-induced early upregulation of Il-25, Il-33, and Tslp in a model solely inducing airway sensitization. Using human airway epithelial cells, we demonstrated that HDM-induced increases in ITLN led to phosphorylation of epidermal growth factor receptor and extracellular-signal regulated kinase, which were required for induction of IL-25, IL-33, and TSLP expression. In two AD models, Itln knockdown suppressed expression of Il-33, Tslp, and Th2 cytokines and eosinophilic inflammation. In humans, ITLN1 expression was significantly increased in asthmatic airways and in lesional skin of AD. We conclude that ITLN contributes to allergen-induced Il-25, Il-33, and Tslp expression in asthma and AD
Dynamical ensembles in stationary states
We propose as a generalization of an idea of Ruelle to describe turbulent
fluid flow a chaotic hypothesis for reversible dissipative many particle
systems in nonequilibrium stationary states in general. This implies an
extension of the zeroth law of thermodynamics to non equilibrium states and it
leads to the identification of a unique distribution \m describing the
asymptotic properties of the time evolution of the system for initial data
randomly chosen with respect to a uniform distribution on phase space. For
conservative systems in thermal equilibrium the chaotic hypothesis implies the
ergodic hypothesis. We outline a procedure to obtain the distribution \m: it
leads to a new unifying point of view for the phase space behavior of
dissipative and conservative systems. The chaotic hypothesis is confirmed in a
non trivial, parameter--free, way by a recent computer experiment on the
entropy production fluctuations in a shearing fluid far from equilibrium.
Similar applications to other models are proposed, in particular to a model for
the Kolmogorov--Obuchov theory for turbulent flow.Comment: 31 pages, 3 figures, compile with dvips (otherwise no pictures
Photoproduction evidence for and against hidden-strangeness states near 2 GeV
Experimental evidence from coherent diffractive proton scattering has been
reported for two narrow baryonic resonances which decay predominantly to
strange particles. These states, with masses close to 2.0 GeV would, if
confirmed, be candidates for hidden strangeness states with unusual internal
structure. In this paper we examine the literature on strangeness
photoproduction, to seek additional evidence for or against these states. We
find that one state is not confirmed, while for the other state there is some
mild supporting evidence favoring its existence. New experiments are called
for, and the expected photoproduction lineshapes are calculated.Comment: 9 pages, RevTex, five postscript figures, submitted to PR
- …