56 research outputs found

    A pipeline for improved QSAR analysis of peptides: physiochemical property parameter selection via BMSF, near-neighbor sample selection via semivariogram, and weighted SVR regression and prediction

    Get PDF
    In this paper, we present a pipeline to perform improved QSAR analysis of peptides. The modeling involves a double selection procedure that first performs feature selection and then conducts sample selection before the final regression analysis. Five hundred and thirty-one physicochemical property parameters of amino acids were used as descriptors to characterize the structure of peptides. These high-dimensional descriptors then go through a feature selection process given by the Binary Matrix Shuffling Filter (BMSF) to obtain a set of important low dimensional features. Each descriptor that passed the BMSF filtering also receives a weight defined through its contribution to reduce the estimation error. These selected features were served as the predictors for subsequent sample selection and modeling. Based on the weighted Euclidean distances between samples, a common range was determined with high-dimensional semivariogram and then used as a threshold to select the near-neighbor samples from the training set. For each sample to be predicted, the QSAR model was established using SVR with the weighted, selected features based on the exclusive set of near-neighbor training samples. Prediction was conducted for each test sample accordingly. The performances of this pipeline are tested with the QSAR analysis of angiotensin-converting enzyme (ACE) inhibitors and HLA-A*0201 data sets. Improved prediction accuracy was obtained in both applications. This pipeline can optimize the QSAR modeling from both the feature selection and sample selection perspectives. This leads to improved accuracy over single selection methods. We expect this pipeline to have extensive application prospect in the field of regression prediction

    Binary Matrix Shuffling Filter for Feature Selection in Neuronal Morphology Classification

    Get PDF
    A prerequisite to understand neuronal function and characteristic is to classify neuron correctly. The existing classification techniques are usually based on structural characteristic and employ principal component analysis to reduce feature dimension. In this work, we dedicate to classify neurons based on neuronal morphology. A new feature selection method named binary matrix shuffling filter was used in neuronal morphology classification. This method, coupled with support vector machine for implementation, usually selects a small amount of features for easy interpretation. The reserved features are used to build classification models with support vector classification and another two commonly used classifiers. Compared with referred feature selection methods, the binary matrix shuffling filter showed optimal performance and exhibited broad generalization ability in five random replications of neuron datasets. Besides, the binary matrix shuffling filter was able to distinguish each neuron type from other types correctly; for each neuron type, private features were also obtained

    Binary Matrix Shuffling Filter for Feature Selection in Neuronal Morphology Classification

    Get PDF
    A prerequisite to understand neuronal function and characteristic is to classify neuron correctly. The existing classification techniques are usually based on structural characteristic and employ principal component analysis to reduce feature dimension. In this work, we dedicate to classify neurons based on neuronal morphology. A new feature selection method named binary matrix shuffling filter was used in neuronal morphology classification. This method, coupled with support vector machine for implementation, usually selects a small amount of features for easy interpretation. The reserved features are used to build classification models with support vector classification and another two commonly used classifiers. Compared with referred feature selection methods, the binary matrix shuffling filter showed optimal performance and exhibited broad generalization ability in five random replications of neuron datasets. Besides, the binary matrix shuffling filter was able to distinguish each neuron type from other types correctly; for each neuron type, private features were also obtained

    China’s 10-year progress in DC gas-insulated equipment: From basic research to industry perspective

    Get PDF
    The construction of the future energy structure of China under the 2050 carbon-neutral vision requires compact direct current (DC) gas-insulation equipment as important nodes and solutions to support electric power transmission and distribution of long-distance and large-capacity. This paper reviews China's 10-year progress in DC gas-insulated equipment. Important progresses in basic research and industry perspective are presented, with related scientific issues and technical bottlenecks being discussed. The progress in DC gas-insulated equipment worldwide (Europe, Japan, America) is also reported briefly

    High-accuracy splice sites prediction based on sequence component and position features

    Get PDF
    Identification of splice sites plays a key role in annotation of genes and hence, the improvement of computational prediction of splice sites with high accuracy has great significance. In this article, we first quantitatively determined the length of window and the number and position of the consensus bases by a Chi-square test, and then extracted the sequence multi-scale component (MSC) features and the position (Pos) and adjacent positions relationship (APR) features of consensus sites. Then we constructed a novel classification model using SVM with above features and applied it to the HS³D dataset. Compared with the results in current literatures, our method produces a great improvement in the 10-fold cross validation accuracies for training sets with true and spurious splice sites of both equal and different-proportions. This method was also applied to the NN269 dataset for further evaluation and independent test. The obtained results are superior to those in literature, which demonstrates the stability and superiority of this method. Satisfying results show that our method has high accuracy for prediction of splice sites

    TSG: a new algorithm for binary and multi-class cancer classification and informative genes selection

    Get PDF
    Background: One of the challenges in classification of cancer tissue samples based on gene expression data is to establish an effective method that can select a parsimonious set of informative genes. The Top Scoring Pair (TSP), k-Top Scoring Pairs (k-TSP), Support Vector Machines (SVM), and prediction analysis of microarrays (PAM) are four popular classifiers that have comparable performance on multiple cancer datasets. SVM and PAM tend to use a large number of genes and TSP, k-TSP always use even number of genes. In addition, the selection of distinct gene pairs in k-TSP simply combined the pairs of top ranking genes without considering the fact that the gene set with best discrimination power may not be the combined pairs. The k-TSP algorithm also needs the user to specify an upper bound for the number of gene pairs. Here we introduce a computational algorithm to address the problems. The algorithm is named Chisquare-statistic-based Top Scoring Genes (Chi-TSG) classifier simplified as TSG. Results: The TSG classifier starts with the top two genes and sequentially adds additional gene into the candidate gene set to perform informative gene selection. The algorithm automatically reports the total number of informative genes selected with cross validation. We provide the algorithm for both binary and multi-class cancer classification. The algorithm was applied to 9 binary and 10 multi-class gene expression datasets involving human cancers. The TSG classifier outperforms TSP family classifiers by a big margin in most of the 19 datasets. In addition to improved accuracy, our classifier shares all the advantages of the TSP family classifiers including easy interpretation, invariant to monotone transformation, often selects a small number of informative genes allowing follow-up studies, resistant to sampling variations due to within sample operations. Conclusions: Redefining the scores for gene set and the classification rules in TSP family classifiers by incorporating the sample size information can lead to better selection of informative genes and classification accuracy. The resulting TSG classifier offers a useful tool for cancer classification based on numerical molecular data

    A high-performance approach for predicting donor splice sites based on short window size and imbalanced large samples

    No full text
    Abstract Background Splice sites prediction has been a long-standing problem in bioinformatics. Although many computational approaches developed for splice site prediction have achieved satisfactory accuracy, further improvement in predictive accuracy is significant, for it is contributing to predict gene structure more accurately. Determining a proper window size before prediction is necessary. Overly long window size may introduce some irrelevant features, which would reduce predictive accuracy, while the use of short window size with maximum information may performs better in terms of predictive accuracy and time cost. Furthermore, the number of false splice sites following the GT–AG rule far exceeds that of true splice sites, accurate and rapid prediction of splice sites using imbalanced large samples has always been a challenge. Therefore, based on the short window size and imbalanced large samples, we developed a new computational method named chi-square decision table (χ2-DT) for donor splice site prediction. Results Using a short window size of 11 bp, χ2-DT extracts the improved positional features and compositional features based on chi-square test, then introduces features one by one based on information gain, and constructs a balanced decision table aimed at implementing imbalanced pattern classification. With a 2000:271,132 (true sites:false sites) training set, χ2-DT achieves the highest independent test accuracy (93.34%) when compared with three classifiers (random forest, artificial neural network, and relaxed variable kernel density estimator) and takes a short computation time (89 s). χ2-DT also exhibits good independent test accuracy (92.40%), when validated with BG-570 mutated sequences with frameshift errors (nucleotide insertions and deletions). Moreover, χ2-DT is compared with the long-window size-based methods and the short-window size-based methods, and is found to perform better than all of them in terms of predictive accuracy. Conclusions Based on short window size and imbalanced large samples, the proposed method not only achieves higher predictive accuracy than some existing methods, but also has high computational speed and good robustness against nucleotide insertions and deletions. Reviewers This article was reviewed by Ryan McGinty, Ph.D. and Dirk Walther

    Improving accuracy for cancer classification with a new algorithm for genes selection

    Get PDF
    Background: Even though the classification of cancer tissue samples based on gene expression data has advanced considerably in recent years, it faces great challenges to improve accuracy. One of the challenges is to establish an effective method that can select a parsimonious set of relevant genes. So far, most methods for gene selection in literature focus on screening individual or pairs of genes without considering the possible interactions among genes. Here we introduce a new computational method named the Binary Matrix Shuffling Filter (BMSF). It not only overcomes the difficulty associated with the search schemes of traditional wrapper methods and overfitting problem in large dimensional search space but also takes potential gene interactions into account during gene selection. This method, coupled with Support Vector Machine (SVM) for implementation, often selects very small number of genes for easy model interpretability. Results: We applied our method to 9 two-class gene expression datasets involving human cancers. During the gene selection process, the set of genes to be kept in the model was recursively refined and repeatedly updated according to the effect of a given gene on the contributions of other genes in reference to their usefulness in cancer classification. The small number of informative genes selected from each dataset leads to significantly improved leave-one-out (LOOCV) classification accuracy across all 9 datasets for multiple classifiers. Our method also exhibits broad generalization in the genes selected since multiple commonly used classifiers achieved either equivalent or much higher LOOCV accuracy than those reported in literature. Conclusions: Evaluation of a gene’s contribution to binary cancer classification is better to be considered after adjusting for the joint effect of a large number of other genes. A computationally efficient search scheme was provided to perform effective search in the extensive feature space that includes possible interactions of many genes. Performance of the algorithm applied to 9 datasets suggests that it is possible to improve the accuracy of cancer classification by a big margin when joint effects of many genes are considered
    corecore