31 research outputs found

    Rapid Scan Electron Paramagnetic Resonance (EPR) and Digital EPR Development

    Get PDF
    Rapid scan electron paramagnetic resonance (EPR) was developed in the Eaton laboratory at the University of Denver. Applications of rapid scan to wider spectra, such as for immobilized nitroxides, spin-labeled proteins, irradiated tooth and fingernail samples were demonstrated in this dissertation. The scan width has been increased from 55 G to 160 G. The signal to noise (S/N) improvement for slowly tumbling spin-labeled protein samples that is provided by rapid scan EPR will be highly advantageous for biophysical studies. With substantial improvement in S/N by rapid scan, the dose estimation for irradiated tooth enamels became more reliable than the traditional continuous wave (CW) EPR. An alternate approach of rapid scan, called field-stepped direct detection EPR, was developed to reconstruct wider EPR signals. A Mn2+ containing crystal was measured by field-stepped direct detection EPR, which had a spectrum more than 6000 G wide. Since the field-stepped direct detection extends the advantages of rapid scan to much wider scan ranges, this methodology has a great potential to replace the traditional CW EPR. With recent advances in digital electronics, a digital rapid scan spectrometer was built based on an arbitrary waveform generator (AWG), which can excite spins and detect EPR signals with a fully digital system. A near-baseband detection method was used to acquire the in-phase and quadrature signals in one physical channel. The signal was analyzed digitally to generate ideally orthogonal quadrature signals. A multiharmonic algorithm was developed that employed harmonics of the modulation frequencies acquired in the spectrometer transient mode. It was applied for signals with complicated lineshapes, and can simplify the selection of modulation amplitude. A digital saturation recovery system based on an AWG was built at X-band (9.6 GHz). To demonstrate performance of the system, the spin-lattice relaxation time of a fused quartz rod was measured at room temperature with fully digital excitation and detection

    Controllable terahertz radiation from a linear-dipole-array formed by a two-color laser filament in air

    Get PDF
    We have demonstrated the effective control on carrier-envelope phase, angular distribution as well as peak intensity of a nearly single-cycle terahertz pulse emitted from a laser filament formed by two-color, the fundamental and the corresponding second harmonics, femtosecond laser pulses propagating in air. Experimentally, such control has been performed by varying the filament length and the initial phase difference between the two-color laser components. A linear-dipole-array model, including the descriptions of the both generation (via laser field ionization) and propagation of the emitted terahertz pulse, is proposed to present a quantitative interpretation of the observations. Our results contribute to the understanding of terahertz generation in a femtosecond laser filament and suggest a practical way to control the electric field of terahertz pulse for potential applications

    Voltage control method of distribution networks using PMU based sensitivity estimation

    Get PDF
    Application of phasor measurement unit (PMU) at distribution networks provide new options for voltage-to-power sensitivity estimation and voltage regulation. A novel voltage control method for distribution networks using PMU based sensitivity estimation is proposed in this paper. The voltage control records are extracted from the historical synchronized phasor measurements. The voltage-to-power sensitivities to reflect the relation of voltage change and power fluctuation are estimated with the obtained voltage control records. In addition to linear parameter, parameters to match the nonlinear relation between voltage and power variation and to track the operation conditions are introduced in the fitting model for sensitivity estimation to improve the accuracy of the voltage control strategy. A voltage control scheme is proposed based on the sensitivities estimated in which the measurements of partial nodes at the distribution network are the only needed data. Case studies on IEEE 33-node test feeder verify the correctness and effectiveness of the proposed method

    Distributed state estimation in digital distribution networks based on proximal atomic coordination

    Get PDF
    With the emerging digitalization technologies represented by edge computing, distribution networks are gradually transforming into digital distribution networks (DDNs). The realization of edge computing drives the distributed operation of DDNs, where multiple areas exchange boundary information through edge computing devices. Benefitting from the data acquisition and computing capacity of edge computing devices, it is feasible to perform accurate and real-time state estimation on the edge side. Aiming at the state perception with edge computing devices in DDNs, this article proposes a distributed state estimation (DSE) method based on the proximal atomic coordination (PAC) algorithm. First, based on convex relaxation optimization, the state estimation model is converted into a positive semidefinite programming (SDP) model to solve the nonconvexity caused by nonlinear measurements, which ensures the accuracy and convergence of state estimation. Then, a DSE method based on the PAC algorithm is proposed to exchange information of each area, which reduces the computation time and realizes the efficient state estimation on the edge side. The model and the effectiveness of the proposed method are numerically demonstrated on the modified PG&E 69-node system and the test case from a practical pilot in Guangzhou, China

    Rapid-Scan EPR of Immobilized Nitroxides

    Get PDF
    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for 14N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for 15N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10 magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes

    Rapid-Scan EPR of Immobilized Nitroxides

    Get PDF
    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for 14N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for 15N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10 magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes

    Spectral interference of terahertz pulses from two laser filaments in air

    Get PDF
    Spectral interference is experimentally demonstrated by two terahertz pulses emitting from filaments induced by two successive femtosecond laser pulses in air. Here, a leading pulse is set to be weaker than a trailing pulse and their temporal separation is larger than the pulse duration of the terahertz pulses. When the leading pulse is stronger than the trailing pulse, the frequency modulation within the whole terahertz envelope is greatly deteriorated due to nonlinear effects applying on the trailing pulse through the plasmas generated by the leading pulses. Such unique terahertz spectrum may find applications in terahertz spectroscopy

    Manipulation of polarisations for broadband terahertz waves emitted from laser plasma filaments

    Get PDF
    Polarization control of broadband terahertz waves is essential for applications in many areas such as material sciences, medical and biological diagnostics, near-field communications and public securities. Conventional methods for polarization control are limited to narrow bandwidth and often with low efficiency. Here based upon theoretical and experimental studies, we demonstrate that the two-colour laser scheme in gas plasma can provide effective control of elliptically polarized terahertz waves, including their ellipticity, azimuthal angle, and chirality. This is achieved with a circularly-polarized laser at the fundamental frequency and its linearly polarized second harmonic, a controlled phase difference between these two laser components, as well as a suitable length of the laser plasma filament. A flexible control of their ellipticity and azimuthal angle is demonstrated with our theoretical model and systematic experiments. This offers a unique and flexible technique on the polarization control of broadband terahertz radiation suitable for wide applications

    Optimal placement of phasor measurement unit in distribution networks considering the changes in topology

    No full text
    Distribution networks usually have a meshed structure but are operated radially to improve the operating efficiency and ensure the power supply under an emergency situation. It is of great significance to guarantee the observability of the entire system under the topology changes in operation. This paper proposes an optimal placement method of phasor measurement unit (PMU) for distribution networks. A generalized binary integer linear programming (ILP) model for PMU placement is proposed. The changes in topology are considered to guarantee the observability under any possible operation mode. The existence of zero injection nodes (ZINs), the existing measurements, and their relevance are also covered in the proposed method to reduce the installed PMU number. The objective of the ILP problem is weighted by the degree of the corresponding node to obtain a scheme with higher measurement redundancy. The correctness and effectiveness of the proposed method are verified via case studies on the IEEE 33-node test feeder, PG&E 69-node test feeder, and a medium voltage distribution network in Southern China
    corecore