33 research outputs found

    Application of optical non-invasive methods to diagnose the state of the lower limb tissues in patients with diabetes mellitus

    Get PDF
    The paper shows the possibility of assessing the functional state of microcirculatory-tissue systems of patients with diabetes mellitus by laser Doppler flowmetry (LDF), diffuse reflectance spectroscopy (DRS) and fluorescence spectroscopy (FS) methods. A review of the existing non-invasive optical technologies used to assess the state of microcirculation and oxygen metabolism in tissues of patients with diabetes is conducted. A series of experimental studies involving 76 patients with diabetes and 46 healthy volunteers was carried out. A wavelet analysis of LDF-grams was used to evaluate the adaptive changes of microcirculation during the temperature tests. The obtained data revealed that the proposed methodology in the form of combined use of several diagnostic technologies (LDF, FS and DRS) allows us to detect the presence or absence of trophic disorders and to evaluate adaptation processes during thermal tests

    Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus

    Get PDF
    According to the International Diabetes Federation, the challenge of early stage diagnosis and treatment effectiveness monitoring in diabetes is currently one of the highest priorities in modern healthcare. The potential of combined measurements of skin fluorescence and blood perfusion by the laser Doppler flowmetry method in diagnostics of low limb diabetes complications was evaluated. Using Monte Carlo probabilistic modeling, the diagnostic volume and depth of the diagnosis were evaluated. The experimental study involved 76 patients with type 2 diabetes mellitus. These patients were divided into two groups depending on the degree of complications. The control group consisted of 48 healthy volunteers. The local thermal stimulation was selected as a stimulus on the blood microcirculation system. The experimental studies have shown that diabetic patients have elevated values of normalized fluorescence amplitudes, as well as a lower perfusion response to local heating. In the group of people with diabetes with trophic ulcers, these parameters also significantly differ from the control and diabetes only groups. Thus, the intensity of skin fluorescence and level of tissue blood perfusion can act as markers for various degrees of complications from the beginning of diabetes to the formation of trophic ulcers

    Data incongruence and the problem of avian louse phylogeny

    Get PDF
    Recent studies based on different types of data (i.e. morphological and molecular) have supported conflicting phylogenies for the genera of avian feather lice (Ischnocera: Phthiraptera). We analyse new and published data from morphology and from mitochondrial (12S rRNA and COI) and nuclear (EF1-) genes to explore the sources of this incongruence and explain these conflicts. Character convergence, multiple substitutions at high divergences, and ancient radiation over a short period of time have contributed to the problem of resolving louse phylogeny with the data currently available. We show that apparent incongruence between the molecular datasets is largely attributable to rate variation and nonstationarity of base composition. In contrast, highly significant character incongruence leads to topological incongruence between the molecular and morphological data. We consider ways in which biases in the sequence data could be misleading, using several maximum likelihood models and LogDet corrections. The hierarchical structure of the data is explored using likelihood mapping and SplitsTree methods. Ultimately, we concede there is strong discordance between the molecular and morphological data and apply the conditional combination approach in this case. We conclude that higher level phylogenetic relationships within avian Ischnocera remain extremely problematic. However, consensus between datasets is beginning to converge on a stable phylogeny for avian lice, at and below the familial rank

    Novel wearable VCSEL-based sensors for multipoint measurements of blood perfusion

    No full text
    Abstract A novel non-invasive, wearable VCSEL-based system for multipoint in āˆ’ vivo measurements of blood perfusion was introduced. The system operates on the basis of the laser Doppler flowmetry (LDF) method and allows for microcirculation studies. The sensors developed were used to analyse the skin blood flow synchronization in homologous regions of the contralateral limbs, both in the basal state and during various functional tests. A high synchronisation of blood flow rhythms in the contralateral limbs of healthy volunteers was shown in the studies presented

    Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus

    No full text
    Abstract According to the International Diabetes Federation, the challenge of early stage diagnosis and treatment effectiveness monitoring in diabetes is currently one of the highest priorities in modern healthcare. The potential of combined measurements of skin fluorescence and blood perfusion by the laser Doppler flowmetry method in diagnostics of low limb diabetes complications was evaluated. Using Monte Carlo probabilistic modeling, the diagnostic volume and depth of the diagnosis were evaluated. The experimental study involved 76 patients with type 2 diabetes mellitus. These patients were divided into two groups depending on the degree of complications. The control group consisted of 48 healthy volunteers. The local thermal stimulation was selected as a stimulus on the blood microcirculation system. The experimental studies have shown that diabetic patients have elevated values of normalized fluorescence amplitudes, as well as a lower perfusion response to local heating. In the group of people with diabetes with trophic ulcers, these parameters also significantly differ from the control and diabetes only groups. Thus, the intensity of skin fluorescence and level of tissue blood perfusion can act as markers for various degrees of complications from the beginning of diabetes to the formation of trophic ulcers
    corecore