64 research outputs found

    Superconductivity at 36 K in Gadolinium-arsenide Oxides GdO1−x_{1-x}Fx_{x}FeAs

    Full text link
    In this paper we report the fabrication and superconducting properties of GdO1−x_{1-x}Fx_{x}FeAs. It is found that when x is equal to 0.17, GdO0.83_{0.83}F0.17_{0.17}FeAs is a superconductor with the onset transition temperature Tcon≈_{c}^{on}\approx 36.6K. Resistivity anomaly near 130K was observed for all samples up to x = 0.17, such a phenomenon is similar to that of LaO1−x_{1-x}Fx_{x}FeAs. Hall coefficient indicates that GdO0.83_{0.83}F0.17_{0.17}FeAs is conducted by electron-like charge carriers.Comment: 3 pages, 4 figure

    Fully Gapped Superconducting State Based on a High Normal State Quasiparticle Density of States in Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 Single Crystals

    Full text link
    We report the specific heat (SH) measurements on single crystals of hole doped FeAsFeAs-based superconductor Ba0.6K0.4Fe2As2Ba_{0.6}K_{0.4}Fe_2As_2. It is found that the electronic SH coefficient γe(T)\gamma_e(T) is not temperature dependent and increases almost linearly with the magnetic field in low temperature region. These point to a fully gapped superconducting state. Surprisingly the sharp SH anomaly ΔC/T∣Tc\Delta C/T|_{T_c} reaches a value of 98 mJ/molK2mJ/mol K^2 suggesting a very high normal state quasiparticle density of states (γn≈63mJ/molK2\gamma_n \approx 63 mJ/mol K^2). A detailed analysis reveals that the γe(T)\gamma_e(T) cannot be fitted with a single gap of s-wave symmetry due to the presence of a hump in the middle temperature region. However, our data indicate that the dominant part of the superconducting condensate is induced by an s-wave gap with the magnitude of about 6 meV.Comment: 5 pages, 5 figure

    Quasiparticle Heat Transport in Ba1−x_{1-x}Kx_xFe2_2As2_2: Evidence for a k-dependent Superconducting Gap without Nodes

    Full text link
    The thermal conductivity κ\kappa of the iron-arsenide superconductor Ba1−x_{1-x}Kx_xFe2_2As2_2 (Tc≃T_c \simeq 30 K) was measured in single crystals at temperatures down to T≃50T \simeq 50 mK (≃Tc\simeq T_c/600) and in magnetic fields up to H=15H = 15 T (≃Hc2\simeq H_{c2}/4). A negligible residual linear term in κ/T\kappa/T as T→0T \to 0 shows that there are no zero-energy quasiparticles in the superconducting state. This rules out the existence of line and in-plane point nodes in the superconducting gap, imposing strong constraints on the symmetry of the order parameter. It excludes d-wave symmetry, drawing a clear distinction between these superconductors and the high-TcT_c cuprates. However, the fact that a magnetic field much smaller than Hc2H_{c2} can induce a residual linear term indicates that the gap must be very small on part of the Fermi surface, whether from strong anisotropy or band dependence, or both

    Magnetic entropy change of the layered perovskites La2-2xSr1+2xMn2O7

    Get PDF
    Magnetocaloric properties of perovskite-type manganese oxides with double Mn-O layers of composition La2−2xSr1+2xMn2O7 (x=0.33 and 0.4) have been investigated. A broad peak of magnetic entropy change (−ΔSM) was observed at the Curie temperature. The shape of −ΔSM is strongly dependent on the Sr concentration. In contrast to Ln1−xAxMnO3 perovskites, the distinct curvilinear shape of −ΔSM for perovskites with double Mn-O layers shows different magnetic mechanisms arising from magnetocrystalline anisotropy

    Growth and characterization of A_{1-x}K_xFe_2As_2 (A = Ba, Sr) single crystals with x=0 - 0.4

    Full text link
    Single crystals of A1−x_{1-x}Kx_xFe2_2As2_2 (A=Ba, Sr) with high quality have been grown successfully by FeAs self-flux method. The samples have sizes up to 4 mm with flat and shiny surfaces. The X-ray diffraction patterns suggest that they have high crystalline quality and c-axis orientation. The non-superconducting crystals show a spin-density-wave (SDW) instability at about 173 K and 135 K for Sr-based and Ba-based compound, respectively. After doping K as the hole dopant into the BaFe2_2As2_2 system, the SDW transition is smeared, and superconducting samples with the compound of Ba1−x_{1-x}Kx_xFe2_2As2_2 (0 <x⩽< x \leqslant 0.4) are obtained. The superconductors characterized by AC susceptibility and resistivity measurements exhibit very sharp superconducting transition at about 36 K, 32 K, 27 K and 23 K for x= 0.40,0.28,0.25 and 0.23, respectively.Comment: 9 pages, 6 figures, 1 table. This paper together with new data are modified into a new pape

    Pairing symmetry and properties of iron-based high temperature superconductors

    Full text link
    Pairing symmetry is important to indentify the pairing mechanism. The analysis becomes particularly timely and important for the newly discovered iron-based multi-orbital superconductors. From group theory point of view we classified all pairing matrices (in the orbital space) that carry irreducible representations of the system. The quasiparticle gap falls into three categories: full, nodal and gapless. The nodal-gap states show conventional Volovik effect even for on-site pairing. The gapless states are odd in orbital space, have a negative superfluid density and are therefore unstable. In connection to experiments we proposed possible pairing states and implications for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio

    Dense matter with eXTP

    Full text link
    In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.Comment: Accepted for publication on Sci. China Phys. Mech. Astron. (2019
    • …
    corecore