291 research outputs found

    Decreased Glomerular Filtration Rate Is Associated with Mortality and Cardiovascular Events in Patients with Hypertension: A Prospective Study

    Get PDF
    BACKGROUND: Few studies reported the associations between decreased glomerular filtration rate (GFR) and mortality, coronary heart disease (CHD), and stroke in hypertensive patients. We aim to assess the associations between GFR and mortality, CHD, and stroke in hypertensive patients and to evaluate whether low GFR can improve the prediction of these outcomes in addition to conventional cardiovascular risk factors. METHODS AND FINDINGS: This is an observational prospective study and 3,711 eligible hypertensive patients aged ≥5 years from rural areas of China were used for the present analysis. The associations between eGFR and outcomes, followed by a median of 4.9 years, were evaluated using Cox proportional hazards models adjusting for other potential confounders. Low eGFR was independently associated with risk of all-cause mortality, cardiovascular mortality, and incident stroke [multivariable adjusted hazard ratios (95% confidence intervals) for eGFR <60 ml/min/1.73 m(2) relative to eGFR ≥90 ml/min/1.73 m(2) were 1.824 (1.047-3.365), 2.371 (1.109-5.068), and 2.493 (1.193-5.212), respectively]. We found no independent association between eGFR and the risk of CHD. For 4-year all-cause and cardiovascular mortality, integrated discrimination improvement (IDI) was positive when eGFR were added to traditional risk factors (1.51%, P = 0.016, and 1.99%, P = 0.017, respectively). For stroke and CHD events, net reclassification improvements (NRI) were 5.9% (P = 0.012) and 1.8% (P = 0.083) for eGFR, respectively. CONCLUSIONS: We have established an inversely independent association between eGFR and all-cause mortality, cardiovascular mortality, and stroke in hypertensive patients in rural areas of China. Further, addition of eGFR significantly improved the prediction of 4-year mortality and stroke over and above that of conventional risk factors. We recommend that eGFR be incorporated into prognostic assessment for patients with hypertension in rural areas of China. LIMITATIONS: We did not have sufficient information on atrial fibrillation to control for the potential covariate. These associations should be further confirmed in future

    Associations of trajectories in body roundness index with incident cardiovascular disease: a prospective cohort study in rural China

    Get PDF
    AimsThe body roundness index (BRI) has good predictive ability for both body fat and visceral adipose tissue. Longitudinal BRI trajectories can reveal the potential dynamic patterns of change over time. This prospective study assessed potential associations between BRI trajectories and incident cardiovascular disease (CVD) in rural regions of Northeast China.MethodsIn total, 13,209 participants (mean age: 49.0 ± 10.3 years, 6,856 [51.9%] male) were enrolled with three repeated times of BRI measurements at baseline (2004–2006), 2008, and 2010, and followed up until 2017 in this prospective study. Using latent mixture model, the BRI trajectories were determined based on the data from baseline, 2008 and 2010. Composite CVD events (myocardial infarction, stroke, and CVD death combined) was the primary endpoint. Cox proportional-hazards models were used to analyze the longitudinal associations between BRI trajectories and incident CVD.ResultsThree distinct BRI trajectories were identified: high-stable (n = 538), moderate-stable (n = 1,542), and low-stable (n = 11,129). In total, 1,382 CVD events were recorded during follow-up. After adjustment for confounders, the moderate-stable and high-stable BRI groups had a higher CVD risk than did the low-stable BRI group, and the HR (95%CI) were 1.346 (1.154, 1.571) and 1.751 (1.398, 2.194), respectively. Similar associations were observed between the trajectories of BRI and the risk of stroke and CVD death. The high-stable group was also significantly and independently associated with CVD, myocardial infarction, stroke, and CVD death in participants aged &lt;50 years.ConclusionBRI trajectory was positively associated with incident CVD, providing a novel possibility for the primary prevention of CVD in rural regions of China

    Establishment and Optimization of Two-dimensional Electrophoresis Technique in Hydatid Fluid Proteome of Echinococcus granulosus

    Get PDF
    Abstract -The aim of this study was to establish and optimize the two-dimensional electrophoresis (2-DE) technology for hydatid fluid proteome of the Echinococcus granulosus, and obtain 2-DE map of hydatid fluid proteome. Total proteins of hydatid fluid were extracted by lyophilization. A series of important factors, such as sample preparation, protein quantities, pH range of immobilized pH gradient (IPG) strip and extraction methods, were optimized to improve the resolution and repeatability. Two-dimensional electrophoresis maps were analyzed after staining. The 2-DE profiles with high resolution and good repeatability were obtained, when the hydatid fluid dealt with ReadyPrep TM 2-D Cleanup Kit were analyzed with the established 2-DE using 400µg of quantitative loading and IPG strips pH7-10. We identified 30 protein spots using PDQuest 8.0 2D analysis software. The molecular weight of most of these proteins ranged from 43 to 97kDa and the isoelectric points of these proteins ranged from 5 to 9. An optimized 2-DE system is set up successfully in this study, electrophoresis pattern of which shows a high resolution and good repeatability, and can be used for the study of E. granulosus proteomics effectively

    Learning to Infer User Hidden States for Online Sequential Advertising

    Get PDF
    To drive purchase in online advertising, it is of the advertiser's great interest to optimize the sequential advertising strategy whose performance and interpretability are both important. The lack of interpretability in existing deep reinforcement learning methods makes it not easy to understand, diagnose and further optimize the strategy. In this paper, we propose our Deep Intents Sequential Advertising (DISA) method to address these issues. The key part of interpretability is to understand a consumer's purchase intent which is, however, unobservable (called hidden states). In this paper, we model this intention as a latent variable and formulate the problem as a Partially Observable Markov Decision Process (POMDP) where the underlying intents are inferred based on the observable behaviors. Large-scale industrial offline and online experiments demonstrate our method's superior performance over several baselines. The inferred hidden states are analyzed, and the results prove the rationality of our inference.Comment: to be published in CIKM 202

    Comprehensive bioinformatics analysis and systems biology approaches to identify the interplay between COVID-19 and pericarditis

    Get PDF
    BackgroundIncreasing evidence indicating that coronavirus disease 2019 (COVID-19) increased the incidence and related risks of pericarditis and whether COVID-19 vaccine is related to pericarditis has triggered research and discussion. However, mechanisms behind the link between COVID-19 and pericarditis are still unknown. The objective of this study was to further elucidate the molecular mechanisms of COVID-19 with pericarditis at the gene level using bioinformatics analysis.MethodsGenes associated with COVID-19 and pericarditis were collected from databases using limited screening criteria and intersected to identify the common genes of COVID-19 and pericarditis. Subsequently, gene ontology, pathway enrichment, protein–protein interaction, and immune infiltration analyses were conducted. Finally, TF–gene, gene–miRNA, gene–disease, protein–chemical, and protein–drug interaction networks were constructed based on hub gene identification.ResultsA total of 313 common genes were selected, and enrichment analyses were performed to determine their biological functions and signaling pathways. Eight hub genes (IL-1β, CD8A, IL-10, CD4, IL-6, TLR4, CCL2, and PTPRC) were identified using the protein–protein interaction network, and immune infiltration analysis was then carried out to examine the functional relationship between the eight hub genes and immune cells as well as changes in immune cells in disease. Transcription factors, miRNAs, diseases, chemicals, and drugs with high correlation with hub genes were predicted using bioinformatics analysis.ConclusionsThis study revealed a common gene interaction network between COVID-19 and pericarditis. The screened functional pathways, hub genes, potential compounds, and drugs provided new insights for further research on COVID-19 associated with pericarditis

    Cryosphere as a temporal sink and source of microplastics in the Arctic region

    Get PDF
    Microplastics (MPs) pollution has become a serious environmental issue of growing global concern due to the increasing plastic production and usage. Under climate warming, the cryosphere, defined as the part of Earth's layer characterized by the low temperatures and the presence of frozen water, has been experiencing significant changes. The Arctic cryosphere (e.g., sea ice, snow cover, Greenland ice sheet, permafrost) can store and release pollutants into environments, making Arctic an important temporal sink and source of MPs. Here, we summarized the distributions of MPs in Arctic snow, sea ice, seawater, rivers, and sediments, to illustrate their potential sources, transport pathways, storage and release, and possible effects in this sentinel region. Items concentrations of MPs in snow and ice varied about 1–6 orders of magnitude in different regions, which were mostly attributed to the different sampling and measurement methods, and potential sources of MPs. MPs concentrations from Arctic seawater, river/lake water, and sediments also fluctuated largely, ranging from several items of per unit to >40,000 items m−3, 100 items m−3, and 10,000 items kg−1 dw, respectively. Arctic land snow cover can be a temporal storage of MPs, with MPs deposition flux of about (4.9–14.26) × 108 items km−2 yr−1. MPs transported by rivers to Arctic ocean was estimated to be approximately 8–48 ton/yr, with discharge flux of MPs at about (1.65–9.35) × 108 items/s. Average storage of MPs in sea ice was estimated to be about 6.1×1018 items, with annual release of about 5.1×1018 items. Atmospheric transport of MPs from long-distance terrestrial sources contributed significantly to MPs deposition in Arctic land snow cover, sea ice and oceanic surface waters. Arctic Great Rivers can flow MPs into the Arctic Ocean. Sea ice can temporally store, transport and then release MPs in the surrounded environment. Ocean currents from the Atlantic brought high concentrations of MPs into the Arctic. However, there existed large uncertainties of estimation on the storage and release of MPs in Arctic cryosphere owing to the hypothesis of average MPs concentrations. Meanwhile, representatives of MPs data across the large Arctic region should be mutually verified with in situ observations and modeling. Therefore, we suggested that systematic monitoring MPs in the Arctic cryosphere, potential threats on Arctic ecosystems, and the carbon cycle under increasing Arctic warming, are urgently needed to be studied in future

    Black carbon and organic carbon dataset over the Third Pole

    Get PDF
    The Tibetan Plateau and its surroundings, also known as the Third Pole, play an important role in the global and regional climate and hydrological cycle. Carbonaceous aerosols (CAs), including black carbon (BC) and organic carbon (OC), can directly or indirectly absorb and scatter solar radiation and change the energy balance on the Earth. CAs, along with the other atmospheric pollutants (e.g., mercury), can be frequently transported over long distances into the inland Tibetan Plateau. During the last decades, a coordinated monitoring network and research program named “Atmospheric Pollution and Cryospheric Changes” (APCC) has been gradually set up and continuously operated within the Third Pole regions to investigate the linkage between atmospheric pollutants and cryospheric changes. This paper presents a systematic dataset of BC, OC, water-soluble organic carbon (WSOC), and water-insoluble organic carbon (WIOC) from aerosols (20 stations), glaciers (17 glaciers, including samples from surface snow and ice, snow pits, and 2 ice cores), snow cover (2 stations continuously observed and 138 locations surveyed once), precipitation (6 stations), and lake sediment cores (7 lakes) collected across the Third Pole, based on the APCC program. These data were created based on online (in situ) and laboratory measurements. High-resolution (daily scale) atmospheric-equivalent BC concentrations were obtained by using an Aethalometer (AE-33) in the Mt. Everest (Qomolangma) region, which can provide new insight into the mechanism of BC transportation over the Himalayas. Spatial distributions of BC, OC, WSOC, and WIOC from aerosols, glaciers, snow cover, and precipitation indicated different features among the different regions of the Third Pole, which were mostly influenced by emission sources, transport pathways, and deposition processes. Historical records of BC from ice cores and lake sediment cores revealed the strength of the impacts of human activity since the Industrial Revolution. BC isotopes from glaciers and aerosols identified the relative contributions of biomass and fossil fuel combustion to BC deposition on the Third Pole. Mass absorption cross sections of BC and WSOC from aerosol, glaciers, snow cover, and precipitation samples were also provided. This updated dataset is released to the scientific communities focusing on atmospheric science, cryospheric science, hydrology, climatology, and environmental science. The related datasets are presented in the form of excel files. BC and OC datasets over the Third Pole are available to download from the National Cryosphere Desert Data Center (10.12072/ncdc.NIEER.db0114.2021; Kang and Zhang, 2021)
    corecore