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Comprehensive bioinformatics
analysis and systems biology
approaches to identify the
interplay between COVID-19
and pericarditis
Daisong Li1, Ruolan Chen1, Chao Huang1, Guoliang Zhang1,
Zhaoqing Li1, Xiaojian Xu1, Banghui Wang1, Bing Li2,3* and
Xian-Ming Chu 1,4*

1Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China,
2Department of Genetics and Cell Biology, Basic Medical College, Qingdao University,
Qingdao, China, 3Department of Dermatology, The Affiliated Haici Hospital of Qingdao University,
Qingdao, China, 4Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao
University, Qingdao, China
Background: Increasing evidence indicating that coronavirus disease 2019

(COVID-19) increased the incidence and related risks of pericarditis and

whether COVID-19 vaccine is related to pericarditis has triggered research and

discussion. However, mechanisms behind the link between COVID-19 and

pericarditis are still unknown. The objective of this study was to further

elucidate the molecular mechanisms of COVID-19 with pericarditis at the gene

level using bioinformatics analysis.

Methods: Genes associated with COVID-19 and pericarditis were collected from

databases using limited screening criteria and intersected to identify the

common genes of COVID-19 and pericarditis. Subsequently, gene ontology,

pathway enrichment, protein–protein interaction, and immune infiltration

analyses were conducted. Finally, TF–gene, gene–miRNA, gene–disease,

protein–chemical, and protein–drug interaction networks were constructed

based on hub gene identification.

Results: A total of 313 common genes were selected, and enrichment

analyses were performed to determine their biological functions and

signaling pathways. Eight hub genes (IL-1b, CD8A, IL-10, CD4, IL-6, TLR4,

CCL2, and PTPRC) were identified using the protein–protein interaction

network, and immune infiltration analysis was then carried out to examine

the functional relationship between the eight hub genes and immune cells as

well as changes in immune cells in disease. Transcription factors, miRNAs,

diseases, chemicals, and drugs with high correlation with hub genes were

predicted using bioinformatics analysis.
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Conclusions: This study revealed a common gene interaction network between

COVID-19 and pericarditis. The screened functional pathways, hub genes,

potential compounds, and drugs provided new insights for further research on

COVID-19 associated with pericarditis.
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1 Introduction

COVID-19 is an atypical respiratory disease caused by the severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has

triggered a global pandemic and caused significant loss of life and

property (1). Globally, as of 21 January, there were 774,395,593

confirmed cases of COVID-19, including 7,023,271 deaths, reported

by the World Health Organization (WHO) (https://covid19.who.int/

). Although more than 80% of patients with COVID-19 present with

asymptomatic infection or mild to moderate self-resolving

symptoms, more than 15% of patients still develop into severe

cases, manifested as severe pneumonia or acute respiratory distress

syndrome, and even multiple organ failure (2, 3). In addition to

respiratory diseases, cardiovascular complications have gradually

become a major threat for patients with COVID-19. Pericarditis is

the most common pericardial disease worldwide; the pericardium

provides fixation and physical protection for the heart, such as

slowing down the impact of heart contraction on the surrounding

blood vessels and preventing the spread of pulmonary and thoracic

infections (4). The etiology of pericarditis may be infectious (bacterial

or viral) or noninfectious (systemic inflammatory disease or post-

cardiac injury syndrome) (5). Viral infection is an important cause of
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pericarditis and studies have shown that it can be an early

complication of COVID-19. Notably, the incidence rate of

pericarditis has increased by at least 15 times after SARS-CoV-2

infection than before COVID-19, and estimates of excess cases

associated with vaccination also indicate a burden associated with

pericarditis (6, 7). Over 13 billion doses of COVID-19 vaccines have

been administered; furthermore, several passive surveillance systems

have indicated that the risk of pericarditis increased after COVID-19

vaccination, especially in young men, but authoritative research

claimed that the incidence was rare (8). Considering benefits and

risks, vaccination should be firmly supported, but strengthening the

surveillance of adverse events following vaccination and continuing

to study the mechanistic relationship between COVID-19 and

pericarditis are still essential.
Increasing evidence suggests that immune responses and

potential immune markers may be associated with COVID-19

severity. Differences in innate immune system components lead

to heterogeneity in the COVID-19 disease spectrum (9). An

imbalanced immune response during viral invasion is an

important immunopathological mechanism in severe diseases

(10). After SARS-CoV-2 infection, immune effector cells release a

large number of pro-inflammatory cytokines, triggering a cytokine

storm that causes important immunopathological events, such as

ARDS and multiple organ failure (11). In recent years, immune

checkpoints have led to breakthroughs and progress in cancer

treatment; however, their application is still limited due to

immune-related adverse events, such as cardiotoxicity. The onset

and progression of pericarditis in the cardiotoxicity brought on by

immunotherapy are intimately tied to the unrestricted regulation of

the immune system (12). The predisposing factors and pathogenesis

of pericarditis remain unclear, and may be related to viral infections

or autoimmune-inflammatory diseases. Under the influence of

exogenous triggers, infections may lead to an autoimmune

response in susceptible hosts by activating innate immunity (13,

14). Therefore, gaining a comprehensive and in-depth

understanding of interactions between viruses and the human

immune system is necessary. Furthermore, studying the impact

and mechanism of the clinical outcomes of COVID-19 and

pericarditis is crucial to promote the research and development of

vaccines with reduced side effects.
In recent years, with the rapid development of high-throughput

biotechnology, the use of gene interaction networks in
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bioinformatics research has become increasingly convenient. The

construction of gene interaction network not only helps to further

understand various biological processes from the perspective of

systems, but also can be widely applied to explore the pathogenesis

of diseases. However, massive data cannot be verified one by one to

explain the mechanism, so gene enrichment studies are needed to

classify differential genes, so as to filter redundant data and screen

out more valuable functional information (15). Based on data

sources and algorithms, methods for gene functional enrichment

analysis can be roughly divided into four categories: over-

representative analysis (ORA), function set scoring (FCS),

pathway topology (PT), and network topology (NT). Enrichment

analyses commonly used include GO enrichment analysis, KEGG

enrichment analysis and gene set enrichment analysis (GSEA).

GSEA consists of three key elements: calculating enrichment

scores, evaluating significance, and adjusting for multiple

hypothesis tests. Weighted Kolmogorov Smirnov (WKS) test was

used in GSEA to obtain the statistical value of the functional set of

the tested gene, and there are other statistical algorithms, such as

c2-test, Mean test, Median test, Wilcoxon rank sum test, etc. (16,

17). The schematic overview for GSEA can be found in

Supplementary Figure 1 (https://www.gsea-msigdb.org/gsea/) (16).

In this study, we employed a wide range of bioinformatics

techniques to identify the common genes of COVID-19 and

pericarditis and analyzed their enrichment pathways and

functions. Protein–protein interaction (PPI) networks were

constructed to identify hub genes and further analyze the

interaction networks of transcription factors (TFs), microRNAs

(miRNAs), chemicals, and drugs. The immune response can serve

as a resection point for studying the common pathogenesis of
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comorbidities. To uncover molecular regulatory networks and

investigate the relationship between hub genes and immune cells,

immune infiltration analysis was employed. This study provides

new insights for exploring the pathophysiological connections and

immune mechanisms and excavating the potential biomarkers and

therapeutic targets for COVID-19 and pericarditis. The overall

flowchart of the study is shown in Figure 1.
2 Materials and methods

2.1 Dataset preparation

By searching the DisGeNET (https://www.disgenet.org/) (18),

comparative toxicogenomics database (CTD) (http://ctdbase.org/)

(19) and GeneCards (https://www.genecards.org/) (20) databases,

we identified genes related to pericarditis and COVID-19. We

selected supplementary datasets from Gene Expression Omnibus

(GEO) of the National Center for Biotechnology Information

(https://www.ncbi.nlm.nih.gov/geo/) (21). GSE164805, platform

number GPL26963, the whole genome transcriptome of

peripheral blood mononuclear cells was analyzed on five healthy

controls and ten COVID-19 patients (22).
2.2 Identification of the common genes of
COVID-19 and pericarditis

Based on the scoring standards of the different databases, we

collected the top 500 genes from the DisGeNET, CTD, and
FIGURE 1

Workflow diagram of the study.
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GeneCards databases when the number was greater than 500. Online

GEO analysis tool GEO2R (www.ncbi.nlm.nih.gov/geo/geo2r/) was

used to analyze sample data for differential gene expression (21). We

utilized GEO2R to identify the differentially expressed genes (DEGs)

with a false discovery rate (FDR) < 0.00001 and |log fold-change| > 1 for

GSE164805. Subsequently, we integrated these two parts of genes related

to COVID-19 and then took the intersection of COVID-19 and

pericarditis to obtain common genes using an online Venn tool

(http://jvenn.toulouse.inra.fr/app/example.html) (23).
2.3 GO and KEGG pathway
enrichment analyses

In order to investigate the probable biological connection

between COVID-19 and pericarditis, the clusterProfiler software

(version 3.14.3) was used to conduct Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis for the common genes (24). Biological processes (BP),

cellular elements (CC), and molecular functions (MF) were all

included in the GO analysis. The top 10 GO and top 20 in KEGG

items with the lowest p-values were shown as bubble diagrams

using an online platform (http://www.bioinformatics.com.cn) for

data processing and visualization.
2.4 PPI network analysis and hub
genes screening

Identifying unknown protein functional modules from PPI

networks is crucial for understanding protein function and

interpreting key data in cell biology. PPI network analysis is a

promising strategy that can provide a deeper and more

comprehensive insight into the relationships between various

diseases from the standpoint of protein interactions (25, 26). The

online analytical tool STRING (https://string-db.org/) was to study

protein interactions, systematically collect and integrate physical

regulatory interactions and functional relationships between

proteins (27). We constructed a PPI network based on the score

greater than 0.4 and analyzed and visualized the results using

Cytoscape 3.9.1, which is an open-source project designed to

integrate high-throughput data and molecular interaction

networks into a unitive framework (28). CytoHubba (https://

apps.cytoscape.org/apps/cytohubba), an important Cytoscape

plugin for network topology analysis, uses 11 methods for

studying key genes from different perspectives.
2.5 Immune infiltration analysis

Immune cells exhibit specific patterns of infiltration and

residence. Studying the infiltration status can provide a better

understanding of their role and mechanism in disease

pathogenesis and can thus be applied to the discovery of new

treatment strategies for many diseases (29). The CIBERSORT tool,
Frontiers in Immunology 04
based on the linear support vector regression, decomposes the

expression matrix of subtypes of human immune cells for

immune-immersion analysis (30). The proportion of immune

cells in GSE164805 was calculated, along with the relevance

between immune cells and hub genes, as well as each immune cell.
2.6 Identification of TFs and miRNAs

TFs are proteins to recognize special DNA sequences and are

key cellular components forming complex regulatory systems to

control gene expression (31). NetworkAnalyst (http://

www.networkanalyst.ca) is to conduct complex meta-analyses

for gene expression and is suitable for data processing and

analysis in the context of PPI networks (32). The construction of

the TF–genes was based on the JASPAR database (http://

jaspar.genereg.net), which includes TF-binding profiles of

multiple species from six taxonomic groups (33). MiRNAs

regulate protein expression by binding to TF; research on the

interaction network of TF-miRNAs was conducted using the

RegNetwork database (http://www.regnetworkweb.org/) (34). In

addition to studying the role of target genes and miRNAs

with TF, we carried out topology analysis and construction of

gene–miRNA networks based on miRTarBase v8.0 (https://

miRTarBase.cuhk.edu.cn/) (35).
2.7 Analysis of gene–disease
interaction networks

DisGeNET integrates and standardizes disease-related genes

and variant data, covering the whole spectrum of human diseases as

well as normal and abnormal features (36). Gene–disease network

was established was to study diseases related to COVID-19 and

pericarditis using the NetworkAnalyst platform.
2.8 Analysis of protein–chemical and
protein–drug interaction networks

Constructing protein–chemical and protein–drug networks is

conducive to predicting the target information of drugs and

chemicals relevant to COVID-19 and pericarditis. In the

NetworkAnalyst platform, the corresponding compounds and

drugs were identified and obtained using the CTD and

DrugBank database.
3 Results

3.1 Identification of common genes of
COVID-19 and pericarditis

By searching the DisGeNET, CTD, and GeneCards databases,

we identified genes related to COVID-19 and pericarditis. To
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improve the integration and standardization of the data, we

summarized the top 500 genes in each database according to their

scoring standards. If the original data were less than 500, all

retrieved data were included. Using this rule, we obtained 51, 500,

and 500 pericarditis-related genes from the DisGeNET, CTD, and

GeneCards databases, respectively. Subsequently, 930 pericarditis-

related genes were identified by merging and de-duplicating the

results from the three databases.

Using the same method, we obtained 1236 COVID-19-related

genes from DisGeNET, CTD, and GeneCards. In addition, we

gained 494 COVID-related genes under the settings: FDR <

0.00001 and log fold-change > 1. By merging and deduplicating

the results from the three databases and the GEO dataset, we

obtained 1711 COVID-related genes. Finally, 313 common genes

between COVID-19 and pericarditis were identified through

intersections (Figure 2) (Table 1; Supplementary Tables 1–3).
Frontiers in Immunology 05
3.2 GO and KEGG pathway
enrichment analyses

Based on common genes, GO and KEGG enrichment were

carried out to examine their biological roles and signal pathways.

Figure 3 displayed the top 10 terms in the BP, CC, and MF categories

with the lowest p-values. BP terms mainly involved the regulation of

cytokine production and inflammatory response and were associated

with the proliferation of immune cells, involving in lymphocytes,

leukocytes, and mononuclear cells (Figure 3A). CC terms mainly

revealed the external side of the plasma membrane and some lumens,

such as secretory granules, cytoplasmic vesicles, and the endoplasmic

reticulum (Figure 3B). MF terms mainly demonstrated the activity of

signaling receptors and immune receptors which are crucial for the

binding of various factors, including proteases, cytokines, and

chemokines (Figure 3C). Furthermore, KEGG analysis showed that
FIGURE 2

Common genes of COVID-19 and pericarditis displayed through Venn diagram.
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most pathways were involved in immune- and infection-related

diseases, such as COVID-19, influenza, measles, tuberculosis,

rheumatoid arthritis, hepatitis and inflammatory bowel disease.

Notably, multiple immune-related pathways were also enriched,

including cytokine receptor interaction, T helper 17 (Th17) cell

differentiation, interleukin 17 (IL-17), tumor necrosis factor (TNF),

and Toll-like receptor signaling pathways (Figures 3D, E). All results

were visualized using bubble plots, which manifested that common

genes might be involved in immune-related functions and pathways,

thereby affecting the progression of COVID-19 and pericarditis

(Tables 2, 3).
3.3 PPI network and hub gene analyses

The common genes of COVID-19 and pericarditis were

imported to STRING to create a PPI network, and then were

uploaded into Cytoscape for comprehensive analysis to forecast
Frontiers in Immunology 06
gene interactions and associated pathways. CytoHubba is a plugin

that identifies hub nodes and provides 11 analysis algorithms to

calculate and sort nodes in the network. We use seven algorithms to

calculate the top 20 and then take intersections to screen hub genes:

Maximal Clique Centrality (MCC), Maximum Neighborhood

Component (MNC), Degree, Closeness, Radiality, Stress and Edge

Percolated Component (EPC) (Figure 4A) (Table 4). Interleukin 1

beta (IL-1b), cluster of differentiation 8 antigen (CD8A), interleukin

10 (IL-10), cluster of differentiation 4 (CD4), interleukin 6 (IL-6),

Toll-like receptor 4 (TLR4), chemokine ligand 2 (CCL2), and

Protein Tyrosine Phosphatase Receptor Type C (PTPRC) were

among the top 20 genes identified from the seven algorithm

scores. The area under the curve (AUC) results were to assess the

specificity and sensitivity of the eight hub genes to COVID-19 using

receiver operating characteristic (ROC) curve analysis. The AUC

values of the hub genes were greater than 0.75, except for IL-10,

indicating that these genes may be potential biomarkers and have a

high diagnostic value for disease (Figures 4B–I).
B C

D E

A

FIGURE 3

GO and KEGG enrichment analysis of the common genes. (A) Biological processes in bubble chart. (B) Cellular component in bubble chart. (C)
Molecular function in bubble chart. (D) The top 20 signaling pathways of KEGG in bubble chart. (E) The top 20 signaling pathways of KEGG in bar
graph. The color of the dots reflects the size of the p-values, and the size of the dots reflects the number of annotated genes in the bubble charts.
Different colors represent different pathway classifications, and the horizontal axis represents the number of genes per pathway in a bar graph.
TABLE 1 Collection of COVID-19 and pericarditis-related genes.

Disease Data
type

Data
source

Raw
number

Filter condition After
filtering

Merge Common

pericarditis Database GeneCards 1008 If the raw data are less than 500, all
are included

500 930 313

COVID-19 Database

GEO

DisGeNET
CTD
GeneCards
DisGeNET
CTD
GSE164805

51
29276
6051
1843
9896
8953 FDR < 0.00001 and log Fold-Change > 1

51
500
500
500
500
494

1711
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3.4 Immune infiltration analysis

Investigating immune cell infiltration patterns in COVID-19

patients was using the CIBERSORT algorithm. The proportions of

22 immune cells with COVID-19 are shown in Figure 5A. Figure 5B

illustrates the distribution of 22 immune cells in COVID-19, and

the infiltration of plasma cells, memory resting CD4 T cells,

monocytes, M0 macrophages, resting mast cells and neutrophils
Frontiers in Immunology 07
in tissues from patients with COVID-19 is considerably higher than

that in normal tissue (p < 0.05). Compared to the normal group, the

proportion of activated CD8 T cells and natural killer (NK) cells in

patients with COVID-19 is lower. Moreover, Figure 6 depicts the

relationships between the 22 immune cells. Neutrophils, naive CD4

T cells, memory B cells, M0 macrophages, and monocytes all

showed negative correlations with CD8 T cells. NK cell activation

was negatively correlated with M0 macrophage, monocyte, and
TABLE 3 The top 20 items of KEGG enrichment of the common genes.

Ontology ID Description GeneRatio P value Count

KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG

hsa05162
hsa05164
hsa05171
hsa05417
hsa05167
hsa04620
hsa05161
hsa05169
hsa05142
hsa05152
hsa04060
hsa04933
hsa05140
hsa05321
hsa05323
hsa04657
hsa04668
hsa04659
hsa05163
hsa05145

Measles
Influenza A
Coronavirus disease - COVID-19
Lipid and atherosclerosis
Kaposi sarcoma-associated herpesvirus infection
Toll-like receptor signaling pathway
Hepatitis B
Epstein-Barr virus infection
Chagas disease
Tuberculosis
Cytokine-cytokine receptor interaction
AGE-RAGE signaling pathway in diabetic complications
Leishmaniasis
Inflammatory bowel disease
Rheumatoid arthritis
IL-17 signaling pathway
TNF signaling pathway
Th17 cell differentiation
Human cytomegalovirus infection
Toxoplasmosis

0.17
0.18
0.20
0.20
0.18
0.14
0.16
0.17
0.13
0.16
0.20
0.12
0.11
0.10
0.12
0.12
0.12
0.12
0.16
0.12

6.93254E-35
1.38095E-32
8.10128E-32
9.73817E-32
4.33964E-31
1.34666E-30
1.85229E-26
3.642E-26
4.80157E-26
1.47638E-25
1.49235E-25
2.79959E-25
1.48981E-24
1.51245E-24
4.03091E-24
5.6493E-24
1.65333E-23
5.736E-23
2.07707E-22
2.69548E-21

49
51
57
55
52
40
44
48
36
45
56
35
31
29
33
33
35
34
46
33
fron
TABLE 2 The top 10 items of GO enrichment of the common genes.

Ontology ID Description GeneRatio P value Count

BP
BP
BP
BP
BP
BP
BP
BP
BP
BP

GO:0001819
GO:0002237
GO:0032496
GO:0019221
GO:0050727
GO:0070661
GO:0032943
GO:0070663
GO:0032103
GO:0046651

positive regulation of cytokine production
response to molecule of bacterial origin
response to lipopolysaccharide
cytokine-mediated signaling pathway
regulation of inflammatory response
leukocyte proliferation
mononuclear cell proliferation
regulation of leukocyte proliferation
positive regulation of response to external stimulus
lymphocyte proliferation

0.28
0.24
0.23
0.27
0.22
0.21
0.19
0.18
0.22
0.18

7.0409E-62
1.85963E-57
4.72483E-57
1.08708E-56
4.33984E-48
2.68703E-47
5.28806E-45
5.02574E-43
1.41146E-42
9.36141E-42

86
74
72
82
69
64
60
55
67
57

CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF

GO:0009897
GO:0060205
GO:0031983
GO:0034774
GO:0005788
GO:0062023
GO:0030139
GO:0045121
GO:0098857
GO:0031093
GO:0005126
GO:0005125
GO:0048018
GO:0030546
GO:0002020
GO:0019955
GO:0004896
GO:0140375
GO:0042379
GO:0003953

external side of plasma membrane
cytoplasmic vesicle lumen
vesicle lumen
secretory granule lumen
endoplasmic reticulum lumen
collagen-containing extracellular matrix
endocytic vesicle
membrane raft
membrane microdomain
platelet alpha granule lumen
cytokine receptor binding
cytokine activity
receptor ligand activity
signaling receptor activator activity
protease binding
cytokine binding
cytokine receptor activity
immune receptor activity
chemokine receptor binding
NAD+ nucleosidase activity

0.19
0.12
0.12
0.12
0.10
0.11
0.10
0.09
0.09
0.04
0.16
0.14
0.18
0.18
0.07
0.07
0.06
0.07
0.05
0.03

2.5535E-35
5.3354E-20
5.3354E-20
2.15233E-19
2.08021E-14
5.89812E-13
1.43902E-12
2.32352E-12
2.32352E-12
1.18011E-09
9.19346E-35
1.41623E-28
1.51612E-26
2.32268E-26
8.36225E-15
2.25206E-12
2.77929E-12
4.54612E-12
6.76235E-10
8.86876E-10

60
38
38
37
31
34
30
29
29
13
50
42
54
54
23
21
18
21
14
10
tiersin.org

https://doi.org/10.3389/fimmu.2024.1264856
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1264856
dendritic cell activation. The relevance between neutrophils,

memory B cells, and M0 macrophages was positive. Naïve CD4 T

cells were positively related to gamma delta T cells, memory B cells,

and M0 macrophages. Resting memory CD4 T cells and plasma

cells showed the positive correlation with resting NK cells.

The relationship between immune cells and hub genes is

depicted in Figures 7, 8. CCL2 exhibited a positive correlation

with naive B cells and resting mast cells but a negative correlation

with eosinophils. CD4 was statistically positively correlated with

CD8 T cells, activated NK cells and resting dendritic cells, but

negatively connected with naïve CD4 T cells, monocytes and M0

macrophages. CD8A was statistically positively relevant to CD8 T

cells, activated NK cells and resting dendritic cells, but negatively

connected with gamma delta T cells, naïve CD4 T cells and

activated dendritic cells. Activated NK cells and eosinophils

statistically linked positively with IL-1b, but resting NK and

resting mast cells statistically related negatively with IL-1b.
Frontiers in Immunology 08
Statistically, there was a positive correlation between IL-6 and M0

macrophages but a negative association with activated NK cells. IL-

10 was statistically positively relevant to activated memory CD4 T

cells and plasma cells. PTPRC was statistically positively associated

with activated NK cells but, negatively correlated to plasma and

activated dendritic cells. While CD8 T cells and active NK cells were

inversely connected with TLR4, resting memory CD4 T cells,

monocytes, resting mast cells, and M0 macrophages were

positively related to TLR4.
3.5 Construction of gene
regulatory networks

To identify the main variations at the transcriptional level and

further study key protein regulatory molecules, we employed a

network-based approach to decipher the regulatory TFs and
B C

D E F

G H

A

I

FIGURE 4

Screening and validation of hub genes. (A) The Venn diagram shows eight overlapping hub genes screened via the six algorithms. (B–I) Results of
the ROC curve analysis and AUC values of hub genes in the COVID-19 dataset.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1264856
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1264856
miRNAs. 38 TFs were connected with the eight hub genes; these

TFs includedMEF2A, POU2F2, CREB1, PPARG, YY1, NR2F1, JUN,

FOXC1 , NR3C1 , and RELA (Figure 9A). Six hub genes

corresponded to 35 miRNAs; the miRNAs binding to multiple

hub genes were hsa-mir-21-5p, hsa-mir-26b-5p, hsa-mir-24-3p,

hsa-mir-335-5p, hsa-mir-1-3p, hsa-mir-146a-5p, hsa-mir-146b-

5p, hsa-mir-124-3p, hsa-mir-106a-5p, hsa-mir-155-5p, hsa-mir-

98-5p, and hsa-let-7c-5p (Figure 9B).
3.6 Gene–disease interaction network

The development of technology and solutions for disease

treatment begins with studying the links between diseases and

genes; the interrelationships between different diseases usually

require one or more similar genes (37). Based on DisGeNET, the

results showed that the gene–disease network was linked to at least

three hub genes. The following diseases had the strongest

coordination with the hub genes studied: rheumatoid arthritis,

glomerulonephritis, hyperalgesia, inflammation, liver cirrhosis,

reperfusion injury, schizophrenia, and major depressive disorder

(Figure 10). Notably, these diseases are mostly related to

inflammation or immune responses, which have implications for

the development of mechanisms and treatment methods for

COVID-19 and pericarditis.
3.7 Protein–chemical and protein–drug
Interaction networks

Constructing protein–chemical and protein–drug interaction

networks contributes to the exploration of the biological functions

of proteins in cells and the research of potential drugs. Only the

chemicals linked to at least four hub genes are displayed in Figure 9.

The top eight chemicals were methotrexate, antirheumatic agents,

nickel, tretinoin, arsenic, benzo(a)pyrene, cadmium, and
Frontiers in Immunology 09
dexamethasone, demonstrating their tight association with

COVID-19 and pericarditis (Figure 11A). Protein–drug network

indicates that drugs related to IL-1b and IL-10 may have broader

scope for study, with AV411 having potential associations with two

genes (Figure 11B).
4 Discussion

Increasing evidence has linked cardiovascular disease to

increased morbidity and mortality from COVID-19, and the

burden is evident even among patients who are not hospitalized

(38, 39). COVID-19 is a real-time global pandemic, and this virus

infection is also a pathogenic factor of pericarditis. COVID-19 has

significantly increased the risk of pericarditis, and because multiple

monitoring reports suggest that the COVID-19 vaccine may also

increase the likelihood of people suffering from pericarditis, many

studies on vaccines and pericarditis have been conducted in

different countries and regions (40, 41). Currently, most reports

on COVID-19 and pericarditis focus on the epidemiology and

vaccines; however, research on the potential mechanisms of

comorbidity remains lacking. Therefore, our research aimed to

reveal the etiology and mechanism of COVID-19 and pericarditis

from the perspective of molecular regulation, based on network data

mining and bioinformatics analysis.

GO is a bioinformatics resource that provides gene product

functions and uses ontology to represent biological knowledge and

it can identify the biological process of shared genes in this study

(42). The enrichment results in the BP and CC were associated with

immune cell proliferation, including that of white blood cells,

lymphocytes, and monocytes, suggesting their involvement in

regulating cytokine production and inflammatory responses.

Lymphocyte count and cytokine levels are closely correlated with

disease severity, which is of great significance for the early diagnosis,

treatment, and prognosis of COVID-19 (43). Gerd et al. examined

the immune cell spectrum in the cerebrospinal fluid with COVID-
TABLE 4 Top 20 hub genes in seven algorithms.

MCC Degree MNC Stress Closeness Radiality EPC

IFNG
IL1B
ITGAM
CD8A
CSF2
IL2
IL4
IL10
CD4
IL17A
IL6
TLR4
CCL2
CXCL10
IL18
PTPRC
IL13
CCL5
TLR2
CCL3

TNF
IL6
IL1B
ALB
AKT1
CD4
IL10
CCL2
STAT3
VEGFA
CXCL8
TLR4
INS
TP53
MMP9
CD8A
IFNG
PTPRC
IL4
ITGAM

TNF
IL6
IL1B
ALB
AKT1
CD4
IL10
CCL2
STAT3
VEGFA
CXCL8
TLR4
INS
MMP9
TP53
CD8A
IFNG
PTPRC
IL4
ITGAM

ALB
TNF
TP53
AKT1
IL6
IL1B
CD4
INS
STAT3
IL10
VEGFA
CCL2
TLR4
CXCL8
CASP3
PTPRC
MMP9
STAT1
CD8A
ERBB2

TNF
IL6
IL1B
ALB
AKT1
CD4
IL10
CCL2
STAT3
VEGFA
CXCL8
TLR4
INS
TP53
MMP9
CD8A
IFNG
PTPRC
IL4
ITGAM

TNF
IL6
IL1B
ALB
AKT1
CD4
IL10
CCL2
STAT3
VEGFA
CXCL8
TLR4
INS
MMP9
TP53
CD8A
IFNG
IL4
PTPRC
ICAM1

TNF
IL6
CD4
IL1B
AKT1
CCL2
IFNG
STAT3
TLR4
IL10
ALB
IL4
CXCL8
MMP9
IL2
PTPRC
CD8A
IL13
VEGFA
STAT1
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19 and the results indicated an expansion of dedifferentiated

monocytes and interferon signature of leukocytes (44). Anti-

inflammatory treatment can reduce the thickness of pericardial

late gadolinium enhancement, alleviate pericardial and systemic

inflammation, and improve the physiological status and symptoms

of pericarditis (45). Studies have focused on the prognostic value of

inflammatory markers in active pericarditis, suggesting that high-

sensitivity C-reactive protein may affect the intensity and duration

of pericarditis (46). MF results mainly involve the binding of

proteases and chemokines as well as the activity of signaling and

immune receptors. Assessing the chemokine status after SARS-

CoV-2 infection and detecting the “immune signature” is crucial for

individual risk stratification (47). Studying the extensive cytokine

releasing syndrome in COVID-19 may be helpful for targeting
Frontiers in Immunology 10
chemokines and growth factors as therapeutic drugs; furthermore,

autoantibodies targeting chemokines may inhibit the potentially

harmful immune response observed in patients with COVID-19

(48, 49). KEGG connects genomic and higher-order functional

information from the perspective of genes and molecular

networks and annotates up-to-date gene catalogs and functions

(50). The top 20 pathways in KEGG involved immune-related

pathways such as COVID-19, influenza, hepatitis, rheumatoid

arthritis, and inflammatory bowel disease, and involved in

immune pathways such as Th17 cell differentiation, IL-17, TNF,

and Toll-like receptors. TNF-a blockers have made important

progress in the treatment of idiopathic recurrent pericarditis (51).

Christian et al. found that after virus clearance, clonally expanded

Th17 cells remained in the lungs, which was associated with the
B

A

FIGURE 5

Immune infiltration analysis. (A) The ratio of 22 immune cells in COVID-19 and control. (B) The proportion and comparison of immune cells in
COVID-19 and control.
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potentially pathogenic cytokine expression profile of IL-17, and

interacted with cytotoxic CD8 T cells and macrophages (52). As key

regulatory factors of the innate immune system, Toll-like receptors

recognize viral particles and induce the secretion of pro-

inflammatory cytokines, which may also be potential targets for

vaccine production (53). In this study, we constructed the gene

network to obtain the common differential genes of COVID-19 and

pericarditis, so as to obtain the hub gene and explore the potential

mechanism correlation between them. GO term functional

enrichment and KEGG pathway enrichment were applied to

identify functional changes caused by differential genes and their

effects in the pathway. However, due to the need for a clear

threshold for GO/KEGG enrichment of the common genes, it is

possible to miss genes with significant biological significance.

GSEA, which may not require the clear threshold and is based on

overall trend analysis, can be implemented in the future.

Meanwhile, Weighted correlation network analysis (WGCNA)

can serve as a supplement to gene network studies and can

analyze gene modules that coordinate expression.

Immune cell infiltration showed that patients with COVID-19

had significantly higher levels of plasma cells, resting memory CD4

rest cells, monocytes, M0 macrophages, resting mast cells, and

neutrophils than the healthy population. Persistent antibody

protection, produced by memory B cells and long-lived plasma

cells, is the pillar of the “arms race” between vaccines immunity and

the constantly mutating SARS-CoV-2 virus infection, and long-

lived plasma cells in bone marrow tissue are the source of these

persistent “memory” antibodies during acute infection (54). Some

studies have evaluated whether pre-existing cross-reactive memory
Frontiers in Immunology 11
T cells affect vaccine immunity, and the results displayed that

subjects with memory CD4 T cells have stronger antibody

responses to vaccines (55). Notably, long-lasting memory T cells

responded to SARS-CoV-2 and exhibited substantial cross-

reactivity with the N protein of SARS-CoV-2 in patients

recovering from SARS-CoV-2 in 2003 (56). Excessive infiltration

of macrophages and monocytes into organs is a critical driver of

severe COVID-19, and the activation of pulmonary macrophages

from infiltrating monocytes results in the recruitment of cytotoxic

effector cells and the release of pro-inflammatory cytokines (57).

Macrophages activate inflammasomes, which oppose host infection

and promote tissue repair by releasing interleukin and inducing

pyroptosis; however, it should be noted that macrophage activation

syndrome induced by macrophage dysfunction may cause damage

to the host (58, 59). The high density of mast cells is related to the

activation and release of proteases, which are affected by soluble

factors released by T cells with the help of stem cell factors. The

proliferation and activation of mast cells are manifestations of

inflammatory cell changes in severe and lethal SARS-CoV-2

infection; thus, regulating mast cells and their pro-inflammatory

mediators may be a potentially effective treatment for COVID-19

(60, 61). The characteristics of neutrophils in severe COVID-19

include the formation and degradation of neutrophil extracellular

traps, expansion and infiltration of neutrophils into the lungs, and

activation and immune suppression of neutrophil subsets in the

circulatory system (62). The abnormal response of neutrophils after

infection with SARS-CoV-2 may be related to uncontrolled viral

replication and exacerbated inflammation. Assessing the number,

function, and status of neutrophils are crucial for distinguishing the
FIGURE 6

The correlation between the 22 immune cells in COVID-19.
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disease severity and identifying the clinical deterioration risk (63).

Many studies have been conducted on the progression of immune

cells in pericarditis. Neutrophils and macrophages produce a large

number of cytokines through the activation of inflammasomes,

which contribute to the immune pathogenesis of recurrent

pericarditis (64). Interference with neutrophil chemotaxis and

adhesion, reduction of recruitment to damaged tissues, and

superoxide production are effective strategies and mechanisms for

the anti-inflammatory treatment of pericarditis (65). The

pericardial interstitial cells of patients with pericarditis exhibit

senescent features that induce structural remodeling of the

pericardium, such as increased collagen matrix secretion and

calcium deposition, promotion of chemotaxis of monocytes/

lymphocytes, and recruitment of inflammatory factors (66).

Moreover, many clinical samples have been collected from

patients with pericarditis. Pleural biopsy revealed pleural

pericarditis accompanied by lymphoplasmacytic inflammation,

such as IgG4-positive plasma cells, and detection of pericardial

fluid indicated that the histamine receptor depended on mast cells
Frontiers in Immunology 12
to infiltrate the pericardial tissue and was involved in the

inflammatory reaction (67, 68). Notably, this study analyzed the

difference of immune infiltration in COVID-19 and identified the

types of immune cells associated with hub gene. With the

accumulation of research data related to pericarditis, immune

infiltration analysis of pericarditis can be carried out in this study.

Based on the PPI network and topological analysis, IL-1b,
CD8A, IL-10, CD4, IL-6, TLR4, CCL2, and PTPRC were identified

as hub genes. Since the COVID-19 pandemic, many trials have

found that the COVID-19 group had higher levels of IL-1, IL-6, and

IL-10 than the control group. Logistic regression and ROC analyses

have revealed that these cytokines have a predictive effect on disease

severity (69, 70). A genome-wide association study showed that

patients with critical COVID-19 had significantly greater blood IL-6

expression levels than patients without symptoms and that an allele

change at the rs2069837 site can reduce IL-6 levels to prevent

critical conditions (71). Anti-interleukin (IL)-1 drugs have been

developed and used to treat autoimmune and rheumatic immune

diseases. As one of the family members with the strongest pro-
B

C D

A

FIGURE 7

The correlation between hub genes and immune cells. The correlations of hub genes (CCL2, CD4, CD8A and IL-1b) with 22 immune cells were
determined using p < 0.05 as the screening criterion.
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FIGURE 8

The correlation between hub genes and immune cells. The correlations of hub genes (IL-6, IL-10, PTPRC and TLR4) with 22 immune cells were
determined using p < 0.05 as the screening criterion.
BA

FIGURE 9

(A) TF–gene interaction network analysis. Dots represent hub genes; square dots represent transcription factors. Darker colors indicate stronger
associations. (B) Gene–miRNA interaction network analysis. Dots represent hub genes; square dots represent miRNAs. Darker colors indicate
stronger associations.
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inflammatory effects, IL-1b is considered the therapeutic target for

recurrent idiopathic pericarditis (72). Research has been conducted

on the etiology, immune mechanisms, and treatment of tuberculous

pericarditis, and showed that IL-10 levels are elevated in the

pericardium and blood (73). Myocardial fibrosis is considered a

non-negligible feature of constrictive pericarditis. IL-6 mediates

abnormal Ca2+ handling and induces atrial fibrosis in sterile

pericarditis rats (74). Patients with severe COVID-19 exhibit less

pronounced increases in TLR4 expression on CD14 monocytes

than those with mild COVID-19, which is related to activation of

TLR4/NF-kB axis after lipopolysaccharide stimulation (75). TLR4
Frontiers in Immunology 14
signaling pathway also regulates myocardial fibrosis by inhibiting its

target genes (76). The detection of specific chemokines in the

plasma at the mRNA and protein levels suggests that higher

concentrations of CCL2 are associated with the severity of

COVID-19, which has potential as a prognostic factor (77). The

immunopathological changes in the spleen of patients with

COVID-19 are also worthy of attention as they involve the

functions of plasma cells and monocytes/macrophages and a

decrease in CD8A abundance (78). Through the analysis of

transcriptome data, PTPRC was shown to be an important

inflammatory and immunomodulatory signature in COVID-19,
FIGURE 10

Gene–disease interaction network analysis. Dots represent hub genes; square dots represent diseases related to hub genes.
BA

FIGURE 11

Protein–chemical and protein–drug interaction network analyses. (A) The interaction between hub genes and potential chemicals. (B) The
interaction between hub genes and potential drugs. Dots represent hub genes; square dots represent chemicals or drugs.
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and that it has high binding efficiency with related drugs in clinical

transformation research (79). There have been some studies on

CCL2, CD8A, and PTPRC in cardiovascular diseases; however,

their roles in pericarditis require further research. Overall, these hub

genes may be potential immune regulatory pivots in COVID-19 and

pericarditis. In addition, there is a very interesting issue worth

discussing. The expression of pro-inflammatory cytokines such as

IL-1b and IL-6 may change over time, and their dynamics may be

potential predictors of disease (80). Currently, database-based

research considers gene expression at different time points as a

whole, and more in-depth studies in the future will focus on

dynamic changes in gene expression to achieve precise

intervention for diseases.

We constructed TF-gene and gene-miRNA interaction

networks to better understand the molecular regulation between

COVID-19 and pericarditis. CREB1, YY1, FOXC1, and NR3C1 were

the TFs having the strongest correlation to the hub genes. We

analyzed the transcriptome RNA-seq data related to COVID-19

and used bioinformatics to decode the molecular tags and pathways

of the host cell response to SARS CoV-2. The genes YY1 and CREB1

may co-regulate autophagy to affect severe conditions. FOXC1 and

YY1 may have good binding affinities to candidate drugs. The

NR3C1-CXCL8-neutrophil axis may determine the severity of

COVID-19 (81–83). The miRNAs that strongly interacted with

the hub genes were hsa-mir-335-5p, hsa-mir-1-3p, hsa-mir-106a-

5p, and hsa-mir-98-5p. In different studies, peripheral blood

mononuclear cells, serum samples, and bronchial aspirates from

patents with COVID-19 and healthy individuals were collected.

Sequencing analysis has shown that miR-1-3p is involved in the

regulation of autophagy and has high specificity and sensitivity for

predicting mortality (84, 85). MiR-335-5p is regulated by

angiotensin-converting enzyme and histone deacetylase and is

involved in drug development to interfere with host-virus

interactions (86). TMPRSS2 is a potential therapeutic target for

COVID-19, and miR-98-5p is a regulatory factor of TMPRSS2 that

originates from two types of endothelial cells in the lungs and

umbilical vein (87). Due to the lack of transcriptome sequencing

and network information analysis of pericarditis, the regulatory

roles of these TFs and miRNAs in pericarditis need to be

further elucidated.

According to the gene-disease interaction network, COVID-19

combined with pericarditis can damage the heart, liver, kidney, and

other organs; trigger inflammation and rheumatism; and cause

neurological and psychiatric diseases. Several cases have reported

that simultaneous onset of glomerulonephritis and pericarditis in

patients with rheumatic immunity and viral infection (88, 89), and

many studies have focused on COVID-19 vaccine that may increase

the risk of glomerulonephritis similar to pericarditis (90, 91). The

humoral immune response of patients with liver cirrhosis after

COVID-19 vaccination is being explored, and case suggest that

constrictive pericarditis may appear as a comorbidity in patients

with liver cirrhosis (92, 93). The increased incidence of rheumatoid

arthritis in patients with COVID-19 may be due to the impaired

function of the autoimmune system and the iatrogenic effect of
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immunosuppressants, and genome-wide cross-trait analysis shows

that higher genetic susceptibility to rheumatoid arthritis also

increases the risk of COVID-19 (94, 95). A similar mechanism

reveals the possibility of antirheumatic drugs as a potential

treatment for COVID-19. The effects of drugs on pericardial

contractions secondary to rheumatoid arthritis have also been

studied in patients with pericarditis (96, 97). Globally, major

depressive disorder and anxiety disorder cases have increased by

27.6% and 25.6%, respectively, as a result of the COVID-19

pandemic, resulting in 49.4 million and 44.5 million DALYs

(disability-adjusted life years) (98). Immune dysfunction caused

by infection can aggravate mental sequelae, and studies on the

influence of COVID-19 on mental health have found that the levels

of inflammatory markers are directly proportional to depression

severity of depression (99). Tryptophan metabolism may be

correlated with the potential susceptibility to depression, and

tryptophan supplementation may improve depressive symptoms

in patients with COVID-19 treated with drugs that can affect

tryptophan metabolism (100). Numerous investigations have

shown that COVID-19 increases the risk of schizophrenia, and

willingness to be vaccinated is related to the severity of psychiatric

symptoms (101, 102). A case report of clozapine-related pericarditis

in a patient with refractory schizophrenia during the drug titration

phase suggested that great attention should be paid to the side

effects of antipsychotics and antidepressants in patients with

COVID-19 and pericarditis (103).

Protein–chemical interaction networks indicated that

methotrexate, antirheumatic agents, nickel, tretinoin, arsenic,

benzo(a)pyrene, cadmium, and dexamethasone have a high

correlation with hub genes. As a specific immunosuppressive

drug, methotrexate impairs immunogenicity and raises the risk of

infection and poor prognosis (104). Interruption of methotrexate

for two weeks enhances antibody responses in patients with

immune-mediated inflammatory diseases after vaccination (105).

IL-6 and IL-1b are pivotal targets of antirheumatic agents, and there

is evidence that blocking the IL-6 receptor can reduce lung

involvement and acute cardiovascular complications in patients

with COVID-19 by inhibiting the systemic inflammatory response

(106). Several clinical trials have been conducted to evaluate the

long-term prognosis of COVID-19 with different doses of

dexamethasone and whether the clinical benefits are related to

different respiratory support modes (107, 108). Methotrexate has

previously been used for the treatment of purulent pericarditis in

rheumatoid arthritis; however, methotrexate-induced pericarditis

and pericardial effusion should be considered (109, 110). In

addition, clinical guidelines indicate that non-steroidal anti-

inflammatory drugs (NSAIDs) such as aspirin are recommended

as effective drugs for the first-line treatment of pericarditis (111).

Notably, when the screening scope of the interaction network is

expanded, NSAIDs such as aspirin and ibuprofen can also be

searched. Protein–drug interaction networks revealed that some

drugs, such as AV411, minocycline, rilonacept, canakinumab,

XOMA 052, and VX-765, exert therapeutic effects by targeting

hub genes. AV411 reduces opioid withdrawal by inhibiting glial
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pro-inflammatory responses, whereas minocycline prevents

potentially fatal arrhythmias by inhibiting pro-inflammatory

cytokines and poly (ADP-ribose) polymerase-1 associated with

SARS-CoV-2 replication (112, 113). Rilonacept is a trap for IL-1b
and has been shown in clinical trials to inhibit recurrent pericarditis

episodes and prevent the recurrence of pericarditis (114).

Canakinumab, a human monoclonal antibody targeting IL-1b, is
associated with the reduction of serum C-reactive protein level and

the improvement of overall mortality in COVID-19; case reports

showed that canakinumab can reduce the risk of recurrence of

systemic disease-related pericarditis (115, 116). As the neutralizing

antibody to IL-1b, XOMA 052 has a rapid onset and sustained

control of intraocular inflammation, and VX-765 ameliorates

myocardial reperfusion injury by inhibiting caspase-1 activity and

reducing lactate dehydrogenase release (117, 118). In summary,

some chemicals and drugs predicted based on hub genes have been

proven in clinical trials and experimental studies of COVID-19 and

pericarditis, whereas others deserve further exploration.

This study had several limitations. There are currently no

suitable microarray or RNA sequencing data for pericarditis,

resulting in a lack of available datasets that may prevent the

acquisition and identification of sufficient DEGs. In addition, our

study was purely based on bioinformatics analysis and requires

subsequent in vivo and in vitro to confirm the validity of the results,

as well as to fully evaluate the biological function of the hub gene

and the clinical value of the drug.
5 Conclusion

In recent years, the topic of increased risk of pericarditis caused

by COVID-19 has triggered a large number of studies and heated

discussions, but there is still a lack of exploration and research on

the mechanism of COVID-19 and pericarditis. The immunological

mechanisms and common genes linked to COVID-19 and

pericarditis were identified in this investigation. The eight hub

genes (IL-1b, CD8A, IL-10, CD4, IL-6, TLR4, CCL2, and PTPRC) are
relatively mature and have been extensively studied in immune

regulation, and some also have the potential to affect immune

functions. Thus, COVID-19 and pericarditis exhibit complex

interactions. The enrichment analysis and various interaction

networks constructed and analyzed in this study revealed the

molecular mechanisms of COVID-19 and pericarditis from

multiple perspectives. Based on the analysis, some potential

compounds and drugs were predicted. However, further research

on their functions and mechanisms is required to provide new ideas

for identify potential biomarkers and explore appropriate

treatment methods.
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