147 research outputs found

    Strategies for lipid production improvement in microalgae as a biodiesel feedstock

    Get PDF
    In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of microalgae. Therefore, application of the strategies to activate lipid accumulation opens the door for lipid overproduction in microalgae. Until now, many original studies regarding the approaches for enhanced microalgal lipid production have been reported in an effort to push forward the production of microalgal biodiesel. However, the current literature demonstrates fragmented information available regarding the strategies for lipid production improvement. From the systematic point of view, the review highlights the main approaches for microalgal lipid accumulation induction to expedite the application of microalgal biodiesel as an alternative to fossil diesel for sustainable environment. Of the several strategies discussed, the one that is most commonly applied is the design of nutrient (e.g., nitrogen, phosphorus, and sulfur) starvation or limitation. Other viable approaches such as light intensity, temperature, carbon dioxide, salinity stress, and metal influence can also achieve enhanced microalgal lipid production.fi=vertaisarvioitu|en=peerReviewed

    Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation–Maximization (SAEM) Algorithm

    Get PDF
    The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation–maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed

    Multiphoton non-local quantum interference controlled by an undetected photon

    Get PDF
    The interference of quanta lies at the heart of quantum physics. The multipartite generalization of single-quanta interference creates entanglement, the coherent superposition of states shared by several quanta. Entanglement allows non-local correlations between many quanta and hence is a key resource for quantum information technology. Entanglement is typically considered to be essential for creating non-local correlations, manifested by multipartite interference. Here, we show that this is not the case and demonstrate multiphoton non-local quantum interference without entanglement of any intrinsic properties of the photons. We harness the superposition of the physical origin of a four-photon product state, which leads to constructive and destructive interference of the photons’ mere existence. With the intrinsic indistinguishability in the generation process of photons, we realize four-photon frustrated quantum interference. We furthermore establish non-local control of multipartite quantum interference, in which we tune the phase of one undetected photon and observe the interference of the other three photons. Our work paves the way for fundamental studies of non-locality and potential applications in quantum technologies

    Bayesian Generalized Low Rank Regression Models for Neuroimaging Phenotypes and Genetic Markers

    Get PDF
    We propose a Bayesian generalized low rank regression model (GLRR) for the analysis of both high-dimensional responses and covariates. This development is motivated by performing searches for associations between genetic variants and brain imaging phenotypes. GLRR integrates a low rank matrix to approximate the high-dimensional regression coefficient matrix of GLRR and a dynamic factor model to model the high-dimensional covariance matrix of brain imaging phenotypes. Local hypothesis testing is developed to identify significant covariates on high-dimensional responses. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. A simulation study is performed to evaluate the finite sample performance of GLRR and its comparison with several competing approaches. We apply GLRR to investigate the impact of 1,071 SNPs on top 40 genes reported by AlzGene database on the volumes of 93 regions of interest (ROI) obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI)

    Structural and Maturational Covariance in Early Childhood Brain Development

    Get PDF
    Brain structural covariance networks (SCNs) composed of regions with correlated variation are altered in neuropsychiatric disease and change with age. Little is known about the development of SCNs in early childhood, a period of rapid cortical growth. We investigated the development of structural and maturational covariance networks, including default, dorsal attention, primary visual and sensorimotor networks in a longitudinal population of 118 children after birth to 2 years old and compared them with intrinsic functional connectivity networks. We found that structural covariance of all networks exhibit strong correlations mostly limited to their seed regions. By Age 2, default and dorsal attention structural networks are much less distributed compared with their functional maps. The maturational covariance maps, however, revealed significant couplings in rates of change between distributed regions, which partially recapitulate their functional networks. The structural and maturational covariance of the primary visual and sensorimotor networks shows similar patterns to the corresponding functional networks. Results indicate that functional networks are in place prior to structural networks, that correlated structural patterns in adult may arise in part from coordinated cortical maturation, and that regional co-activation in functional networks may guide and refine the maturation of SCNs over childhood development

    Erosion-deposition patterns and depo-center movements in branching channels at the near-estuary reach of the Yangtze River

    Get PDF
    Channel evolution and depo-center migrations in braided reaches are significantly influenced by variations in runoff. This study examines the effect of runoff variations on the erosion-deposition patterns and depocenter movements within branching channels of the near-estuary reach of the Yangtze River. We assume that variations in annual mean duration days of runoff discharges, ebb partition ratios in branching channels, and the erosional/depositional rates of entire channels and sub-reaches are representative of variations in runoff intensity, flow dynamics in branching channels, and morphological features in the channels. Our results show that the north region of Fujiangsha Waterway, the Liuhaisha branch of Rugaosha Waterway, the west branch of Tongzhousha Waterway, and the west branch of Langshansha Waterway experience deposition or reduced erosion under low runoff intensity, and erosion or reduced deposition under high runoff intensity, with the depocenters moving upstream and downstream, respectively. Other waterway branches undergo opposite trends in erosion-deposition patterns and depo-center movements as the runoff changes. These morphological changes may be associated with trends in ebb partition ratio as the runoff discharge rises and falls. By flattening the intra-annual distribution of runoff discharge, dam construction in the Yangtze Basin has altered the ebb partition ratios in waterway branches, affecting their erosion-deposition patterns and depo-center movements. Present trends are likely to continue into the future due to the succession of large cascade dams under construction along the upper Yangtze and ongoing climate change

    Dynamic Budget Throttling in Repeated Second-Price Auctions

    Full text link
    Throttling is one of the most popular budget control methods in today's online advertising markets. When a budget-constrained advertiser employs throttling, she can choose whether or not to participate in an auction after the advertising platform recommends a bid. This paper focuses on the dynamic budget throttling process in repeated second-price auctions from a theoretical view. An essential feature of the underlying problem is that the advertiser does not know the distribution of the highest competing bid upon entering the market. To model the difficulty of eliminating such uncertainty, we consider two different information structures. The advertiser could obtain the highest competing bid in each round with full-information feedback. Meanwhile, with partial information feedback, the advertiser could only have access to the highest competing bid in the auctions she participates in. We propose the OGD-CB algorithm, which involves simultaneous distribution learning and revenue optimization. In both settings, we demonstrate that this algorithm guarantees an O(Tlog⁥T)O(\sqrt{T\log T}) regret with probability 1−O(1/T)1 - O(1/T) relative to the fluid adaptive throttling benchmark. By proving a lower bound of Ω(T)\Omega(\sqrt{T}) on the minimal regret for even the hindsight optimum, we establish the near optimality of our algorithm. Finally, we compare the fluid optimum of throttling to that of pacing, another widely adopted budget control method. The numerical relationship of these benchmarks sheds new light on the understanding of different online algorithms for revenue maximization under budget constraints.Comment: 29 pages, 1 tabl

    SGPP: spatial Gaussian predictive process models for neuroimaging data

    Get PDF
    The aim of this paper is to develop a spatial Gaussian predictive process (SGPP) framework for accurately predicting neuroimaging data by using a set of covariates of interest, such as age and diagnostic status, and an existing neuroimaging data set. To achieve better prediction, we not only delineate spatial association between neuroimaging data and covariates, but also explicitly model spatial dependence in neuroimaging data. The SGPP model uses a functional principal component model to capture medium-to-long-range (or global) spatial dependence, while SGPP uses a multivariate simultaneous autoregressive model to capture short-range (or local) spatial dependence as well as cross-correlations of different imaging modalities. We propose a three-stage estimation procedure to simultaneously estimate varying regression coefficients across voxels and the global and local spatial dependence structures. Furthermore, we develop a predictive method to use the spatial correlations as well as the cross-correlations by employing a cokriging technique, which can be useful for the imputation of missing imaging data. Simulation studies and real data analysis are used to evaluate the prediction accuracy of SGPP and show that SGPP significantly outperforms several competing methods, such as voxel-wise linear model, in prediction. Although we focus on the morphometric variation of lateral ventricle surfaces in a clinical study of neurodevelopment, it is expected that SGPP is applicable to other imaging modalities and features
    • 

    corecore