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Abstract

The aim of this paper is to develop a spatial Gaussian predictive process (SGPP) framework for

accurately predicting neuroimaging data by using a set of covariates of interest, such as age and

diagnostic status, and an existing neuroimaging data set. To achieve better prediction, we not only

delineate spatial association between neuroimaging data and covariates, but also explicitly model

spatial dependence in neuroimaging data. The SGPP model uses a functional principal component

model to capture medium-to-long-range (or global) spatial dependence, while SGPP uses a

multivariate simultaneous autoregressive model to capture short-range (or local) spatial

dependence as well as cross-correlations of different imaging modalities. We propose a three-stage

estimation procedure to simultaneously estimate varying regression coefficients across voxels and

the global and local spatial dependence structures. Furthermore, we develop a predictive method

to use the spatial correlations as well as the cross-correlations by employing a cokriging technique,

which can be useful for the imputation of missing imaging data. Simulation studies and real data

analysis are used to evaluate the prediction accuracy of SGPP and show that SGPP significantly

outperforms several competing methods, such as voxel-wise linear model, in prediction. Although
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we focus on the morphometric variation of lateral ventricle surfaces in a clinical study of

neurodevelopment, it is expected that SGPP is applicable to other imaging modalities and features.
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autoregressive model; Spatial Gaussian predictive process

1. Introduction

The purpose of this paper is to develop a spatial Gaussian predictive process (SGPP)

modeling framework for predicting neuroimaging data by using a set of covariates of

interest, such as age and diagnostic status, and an existing neuroimaging data set. To achieve

better prediction, we characterize both spatial dependence (or variability) of imaging data

and its spatial association with a set of covariates of interest (e.g., age). Following spatial

normalization, massive imaging data from different subjects are usually observed (or

measured) in a large number of locations (called voxels) of a common 3 dimensional (3D)

volume (or 2D surface), which is called a template. Conventionally, voxel-wise analysis has

been widely used to establish varying association between registered imaging data and

covariates. Voxel-wise analysis is commonly carried out in two major steps: Gaussian

smoothing the imaging data and subsequently fitting a statistical model at each voxel. As

extensively discussed in the literature (Jones et al., 2005; Zhao et al., 2012; Ball et al., 2012;

Li et al., 2013; Derado et al., 2010), the use of Gaussian smoothing may introduce

substantial bias in statistical results, while spatial correlations and dependence across

different voxels are not taken into account in the voxel-wise analysis. Thus, as shown in Li

et al. (2011) and Polzehl et al. (2010), the voxel-wise analysis is generally not optimal in

power. We will further show below that the voxel-wise analysis is also not optimal in

prediction, since it does not account for spatial dependence of imaging data.

Recently, much effort has been devoted to developing various advanced statistical models

by explicitly incorporating the spatial smoothness of imaging data (Qiu, 2007; Polzehl et al.,

2010; Li et al., 2011). For instance, in (Polzehl and Spokoiny, 2006), a novel propagation-

separation approach was developed to adaptively and spatially smooth a single image

without explicitly detecting edges. Recently, there are a few attempts to extend those

adaptive smoothing methods to smoothing images from multiple subjects (or scans)

(Tabelow et al., 2008; Polzehl et al., 2010). In (Li et al., 2011, 2012, 2013), a multiscale

adaptive regression model, which integrates the propagation-separation approach and voxel-

wise approach, was developed for a large class of parametric models from cross-sectional,

twin, and longitudinal studies. However, these adaptive smoothing methods do not explicitly

characterize spatial correlations of imaging data, which are important for better prediction.

Within the literature, there have been some attempts to model spatial dependence in imaging

data, but these approaches are generally hampered by heavy computation. See (Bowman et

al., 2008) for an extensive review of different models for delineating spatial dependence of

imaging data. Since the dimension of imaging data can be extremely high, it is

computationally prohibitive to compute large unstructured variance-covariance matrix and
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its functions (e.g., inverse). Thus, an unstructured variance-covariance matrix is solely

assumed for a small number of regions of interest (ROIs) or all voxels in a small ROI

(Bowman, 2007). Therefore, for all voxels in the brain, a relatively simple covariance model

is necessarily considered. Under the Bayesian framework, spatial correlations in imaging

data have been modeled through various spatial priors, such as conditional autoregressive

(CAR), Gaussian process, or Markov random field (MRF), to spatial component of the

signal or the noise process (Groves et al., 2009; Penny et al., 2005; Brezger et al., 2007).

Such spatial priors are commonly characterized by several tuning parameters, but it can be

computationally prohibitive in calculating these tuning parameters (Zhu et al., 2007).

Moreover, it can be restrictive to assume a specific type of correlation structure such as

CAR and MRF, since such correlation structure may not accurately approximate the global

and local spatial dependence structure of imaging data. However, accurately modeling the

spatial dependence of imaging data is critical for prediction (Guo et al., 2008; Cressie and

Wikle, 2011; Sang and Huang, 2012).

Gaussian process models have been developed for several aspects of neuroimaging data

analysis. For instance, Gaussian process theory is the primary statistical method for carrying

out topological inference in statistical parametric mapping and correcting for multiple

comparisons (Worsley et al., 2004). Moreover, Gaussian process models have been used to

predict clinical outcomes (e.g., behavioral score) and disease status (e.g., healthy control

versus diseased subject) (Marquand et al., 2010). In these prediction models, Gaussian

process is primarily used as a prior distribution over the functional feature space associated

with clinical outcomes (or disease status) and its covariance function (or operator) is

determined by covariance between each data sample. In contrast, we focus on predicting (or

imputing) imaging data by using a set of covariates and existing imaging data including data

from the same modality and different imaging modalities. Moreover, our Gaussian process

model learn the local and global spatial dependence structures within each imaging data.

The contribution of our work is two-fold. The first one is to develop SGPP to delineate the

association between high-dimensional imaging data and a set of covariates of interest, such

as age, while accurately approximating spatial dependence of imaging data. The second one

is to develop a simultaneous estimation and prediction framework for the analysis of

neuroimaging data. Compared with the existing literature discussed above, we make several

novel contributions as follows. (i) SGPP integrates the voxel-wise analysis based on a linear

regression model and a full scale approximation of large covariance matrices for imaging

data (Sang and Huang, 2012) into a single modeling framework. Specifically, we use a

functional principal component model (fPCA) to capture the medium-to-large scale spatial

variation and a multivariate simultaneous autoregressive model (SAR) (Schabenberger and

Gotway, 2004; Wall, 2004; Kissling and Carl, 2008; Kelejian and Prucha, 2004) to capture

the small-to-medium scale, local variation that is unexplained by fPCA. (ii) SGPP can be

regarded as an important extension of spatial mixed effects models in spatial statistics (Sang

and Huang, 2012; Cressie and Johannesson, 2008a; Cressie and Wikle, 2011). SGPP directly

estimates spatial basis functions and allows varying regression coefficients across the brain,

whereas spatial mixed effects models assume a set of fixed spatial basis functions and fix

regression coefficients across all locations. (iii) We develop a three-stage estimation

procedure to estimate the regression coefficients varying across voxels and the spatial
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correlations associated with fPCA and SAR. (iv) We develop a predictive method to use the

spatial correlations as well as the cross-correlations of different imaging modalities by

employing a cokriging (Myers, 1982; Cressie, 1993) technique and apply it to simulated and

real imaging data sets. (v) We use simulated and real data sets to show that SGPP can

dramatically gain substantial prediction accuracy.

2. Methods

2.1. SGPP Model Formulation

We consider multivariate imaging measurements at each location of a three-dimensional

(3D) volume (or 2D surface) and clinical variables (e.g., age, gender, and height) from n

subjects. Without loss of generality, let D and d, respectively, represent a compact set in ℝ3

and the center of a voxel (or vertex) in D. For the i-th subject, we observe a p × 1 vector of

covariates, denoted by xi = (xi1, …, xip)T , and a J × 1 vector of neuroimaging measures

(e.g., cortical thickness), denoted by yi(dm) = (yi,1(dm), … , yi,J(dm))T , at voxel dm in D for

m = 1, … , M, where M denotes the total number of voxels in D.

Our spatial Gaussian predictive process (SGPP) model is given by

(1)

where βj(d) = (βj1(d), … , βjp(d))T is a p × 1 vector of regression coefficients at d. Without

ηi,j(d), model (1) reduces to a standard general linear model (GLM). As specified below,

ηi,j(d) characterizes both individual image variations from  and the medium-to-long-

range dependence of imaging data between yi,j(d) and yi,j(d′) for any d ≠ d′, whereas εi,j(d)

for all d ∈ D are spatially correlated errors that capture the local (or short-range) dependence

of imaging data. We assume that ηi(d) = (ηi,1(d), … , ηi,J (d))T and εi(d) = (εi, 1(d), … , εi,1
(d))T are mutually independent, and ηi(d) and ∈i(d) are, respectively, independent and

identical copies of GP(0, Ση) and GP(0, Σ ε), where GP(μ, Σ) denotes a Gaussian process

vector with mean function μ(d) and covariance function Σ(d, d′).

We consider a functional principal component analysis (fPCA) model for the spatial process

ηi(d) or a spectral decomposition of Ση(d, d′) = [Ση,jj′(d, d′)]. Let λj,1 ≥ λj,2 ≥ … ≥ 0 be the

ordered eigenvalues of the linear operator determined by Ση,jj with  and the

ψj,l(d)’s be the corresponding orthonormal eigenfunctions (Yao and Lee, 2006; Hall et al.,

2006; Chiou et al., 2004). Then the spectral decomposition of Ση,jj(d, d′) is given by

(2)

Since λj,l ≈ 0 for l ≥ L0 + 1, ηi,j(d) admits the Karhunen-Loeve expansion and its

approximation given by

(3)
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where  is referred to as the (j, l)-th functional principal

component score of the i-th subject, in which dV(s) denotes the Lebesgue measure. For each

fixed (i, j), the ξij,l’s are uncorrelated random variables with E(ξij,l) = 0 and .

We consider a multivariate simultaneous autoregressive (SAR) model for εi(d). From now

on, we focus on the closest neighboring voxels of each voxel d, denoted as N(d), since it is

easy to consider more complex neighborhood sets. The SAR model can be written as

(4)

where ρ is an autocorrelation parameter, which controls the strength of the local positive

spatial dependence, and |N(d)| denotes the cardinality of N(d). Since fPCA has captured the

medium-to-long nonstationary correlations of imaging data, we assume that ρ is the same

across the brain and the value of ρ is between 0 and 1 to ensure that the covariance matrix Σε

= (Σε (d, d′)) is nonsingular (Schabenberger and Gotway, 2004; Gelfand and Vounatsou,

2003). We assume that ei(d) = (ei,1(d), … , ei,J (d))T are independent and identical copies of

GP(0, Σe) with Σe(d, d′) = 0 for d ≠ d′ and Σe(d, d) = Σe(θ(d)), where θ(d) is a vector of

unknown parameters in Σe(θ(d)) (Pinheiro and Bates, 1996).

Based on fPCA and SAR, we can obtain a simple approximation to the covariance structure

of yi(d), which is given by Σy(d, d′) = Cov(yi(d),yi(d′)) = Ση(d, d′) + Σε(d, d′). Specifically,

combining (3) and (4), we can obtain an approximation of model (1) given by

(5)

Since L0 is relatively small in practice, it is easy to approximate Σy = (Σy(d, d′)) and .

Let’s consider the case with J = 1. In this case, Ση = (Ση(d, d′)) is an M × M matrix and can

be approximated by , where Λη = diag(λ1,1, … , λ1,L0) and Ψη = (ψ1,l(d)) is

an M × L0 matrix. Furthermore, we will show below that the inverse of an M × M matrix Σε

= (Σε (d, d′)) is a sparse matrix. Note that Σy and  are given by  and

, respectively, where IL0 is a L0 × L0

matrix. Therefore, for relatively small L0, although M is extremely large, we just need to

save Ψη and Λη in the computer memory for further computation of Σy and .

2.2. Estimation Procedure

We develop a three-stage estimation procedure as follows. The three stages include
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• Stage (I): the least squares estimate of the regression coefficients β(d) = [β1(d), … ,

βJ (d)], denoted by β̂(d), across all voxels in D;

• Stage (II): a nonparametric estimate of Ση and its associated eigenvalues and

eigenfunctions;

• Stage (III): the restricted maximum likelihood estimation of ρ and θ = (θ(d)).

A path diagram of SGPP is presented in Figure 1.

Stage (I) is to calculate the least squares estimate of the regression coefficients at voxel d,

which are given by

(6)

For SGPP, one may directly calculate the maximum likelihood estimate of βj(d) by explicitly

accounting for spatial correlations of imaging data. However, this is unnecessary since β̂
j(d)

is exactly the maximum likelihood estimate of βj(d) under SGPP. Specifically, SGPP can be

regarded as a special case of seemingly unrelated regressions (Zellner, 1962) and the

maximum likelihood estimators turn out to be numerically identical to the least squares

estimators when the same set of covariates is used in all voxels. Sharing the same set of

covariates across voxels is exactly the case for many neuroimaging applications. Therefore,

statistically, incorporating spatial correlations of imaging data under SGPP does not lead to

efficiency gain.

Instead, to gain efficiency, one needs to explicitly incorporate the spatial smoothness of

imaging data (Polzehl et al., 2010; Li et al., 2011; Groves et al., 2009; Penny et al., 2005;

Brezger et al., 2007; Smith and Fahrmeir, 2007). For instance, in Polzehl et al. (2010) and Li

et al. (2011), various novel propagation-separation methods were developed for a large class

of parametric models by explicitly assuming piecewise smoothness of imaging data. Under

the Bayesian framework, various MRF spatial priors were used to primarily capture spatial

smoothness, not spatial correlations, of imaging data (Groves et al., 2009; Penny et al.,

2005; Brezger et al., 2007; Smith and Fahrmeir, 2007). Although we may use such

estimation methods to refine βĵ(d), we avoid such refinement for simplicity, since our

primary interest focuses on predicting imaging data.

Stage (II) is to estimate Ση and its eigenvalues and eigenfunctions. Stage (II) consists of

three steps as follows.

• Step (II.1) is to calculate all individual functions ηi,j(d) by using nonparametric

regression techniques. We may apply the local linear regression method to

 as shown in Zhu et al. (2011). Alternatively, we may use a

spatial smoothing technique based on the neighborhood structure for graph data,

such as data based on the cortical and subcortical surface geometry or structural

and functional connectivity matrices (Grenander and Miller, 2007). Specifically,

we use the locally weighted average method (Waller and Gotway, 2004) to estimate

η̂
i,j(d) by

Hyun et al. Page 6

Neuroimage. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(7)

where 1(·) denotes an indicator function of an event.

• Step (II.2) is to estimate Ση(d, d′) by using the empirical covariance matrix of η̂
i(d)

= (η̂
i,1(d), … , η̂

i,J (d))T as follows:

(8)

Then, we can use the spectral decomposition of (8) to estimate the eigenvalue-

eigenvector pairs of Ση(d, d′) in (2). Since higher order principal components are

much harder to estimate and interpret, only a finite number of principal components

are assumed to be relevant. Typically the value L0 in (3) is chosen based on the

proportion of explained variance (Zipunnikov et al., 2011; Greven et al., 2010a;

Zhu et al., 2011; Di et al., 2009). Similar to the method in Zhu et al. (2011), we

chose the number of principal components in a way that the proportion of the

cumulative eigenvalue is at least 80%. These choices worked well in our

simulations and application.

• Step (II.3) is to compute the functional principal component scores ξi,j,l. The (j, l)-

th functional principal component score of the i-th subject can be approximated by

(9)

where V(dm) is the volume of voxel dm.

Stage (III) is to estimate the parameters in the SAR model. First, following Schabenberger

and Gotway (2004) and Carlin and Banerjee (2003), we define a proximity matrix given by

W = [wmm′]m=1, … ,M; m′=1,…,M, where wmm′ = |N(dm|−1 1(dm′ ∈ N (dm)). Then (4) can be

written as

(10)

where IK denotes a K × K identity matrix for any integer K, εi = (εi(d1)T ,…, εi(dM)T)T, ei =

(ei(d1)T ,…, ei(dM)T)T, and ⊗ denotes the Kronecker product. We can directly estimate the

unknown parameters of model (10), whose details are given in Appendix A.

2.3. Prediction Procedure

We present a prediction procedure to estimate the prediction accuracy of the proposed SGPP

model. We start with splitting the data set into a training set and a test set. We fit the SGPP

model to the training set to estimate the regression coefficients, denoted as β̂
j;TR(d),

eigenvalue-eigenfunction pairs, denoted as { (λ̂
j,l;TR, ψ̂

j,l;TR(d)) : l = 1,…, L0}, and the

REML estimates of SAR parameters (ρTR, θ̂TR), denoted as (ρT̂R, θ̂
TR).

Hyun et al. Page 7

Neuroimage. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Then we use a prediction procedure given below to predict the multiple measurements at the

hold-out voxels, based on the measurements at other voxels and the fitted model, for each

subject in the test set.

Without loss of generality, we assume that Dmis is the set of all voxels with missing data for

the i0-th subject. Here, the number of voxels in Dmis can be relatively large compared with

that in D. The prediction procedure consists of three steps as follows.

• Step (III.1) is to estimate ξi0j,ℓ, denoted by ξ̂
i0j,ℓ;TE, for l = 1, …, L0. First, we

estimate ηi0,j (d), denoted as η̂
i0,j;TE(d), for all d ∈ D \ D mis. We will apply the

nonparametric methods described in Step (II.1). Second, since ψ̂
j,l;TR(d) and η̂

i0,j;TE

(d) are known for all d ∈ D \ Dmis, it follows from (3) that estimating ξ̂
i0j,ℓ;TE is

equivalent to solving a linear model given by

(11)

If the number of voxels in D \ Dmis is larger than L0, which is usually small, then

we can calculate the least squares estimate of ξi0j = (ξi0j,1, ⋯, ξi0j, L0)T given by

(12)

• Step (III.2) is to estimate εi0,j (d), denoted by εî0j;TE(d), for all d ∈ D. First, we will

calculate  for all d ∈ D

\Dmis. Second, we will use the kriging method to calculate ε̂
i0j;TE(d) for all d ∈

Dmis.

• Step (III.3) is to predict yi0,j(d) according to

(13)

2.4. Model Validation

For each subject in the test set, we apply the prediction procedure described in Section 2.3 to

predict the partially missing imaging data. We evaluate the prediction accuracy of the

proposed model by quantifying the prediction error at all voxels with missing data.

Specifically the rtMSPE for each j is given by

(14)
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where STE denotes the set of all subjects in the test set, |STE| and |Dmis| are, respectively, the

cardinality of STE and Dmis. We also calculate the rtMSPE for several competing methods,

such as the voxel-wise linear model (VWLM), and compare their prediction accuracy.

3. Simulation Studies

In this section, we use simulation examples to investigate the finite sample performance of

SGPP. First, we use Gaussian random fields to simulate random samples in order to examine

the accuracy of all parameter estimates in model (5) and evaluate the predictive performance

of model (5) using rtMSPE. Second, we use a class of non-Gaussian random fields to

simulate random samples in order to examine the robustness of SGPP.

3.1. Gaussian Random Fields

We simulated data at all 900 pixels on a 30 × 30 phantom image for n = 50 subjects. At a

given pixel dm = (dm1, dm2)T , the data were generated from a bivariate spatial Gaussian

process model according to

(15)

where xi2 were generated independently from the uniform distribution on [1, 2]. We set

, where ξi,j,l are independently generated according to ξi1,l ~

N(0, 142), ξi1,2 ~ N(0, 72), ξi2,1 ~ N(0, 152), and ξi2,2 ~ N(0, 72). The regression coefficients

and eigenfunctions were set as follows:

We also generated εi = (εi(d1)T,…, εi(d900)T)T from N(0, Ψ (ρ, θ)), where ρ = 0.9 and θ was

chosen in a way that Σe (θ) = I900 ⊗ diag(0.278, 0.04). In this case, we impose the

homogeneous variance assumption across all voxels.

We fitted the model (5) to the simulated data using the estimation procedure described in

Section 2.2. Figure 2 shows the true βj (d) and β̂
j (d) for j = 1, 2. As shown in Figure 2, β̂

j (d)

detects the patterns in the true regression coefficients, but the estimated regression

coefficients are also affected by the large scale spatial variation, and the variance appears to

be large. Following the method described in Section 2.2, we estimated ηi,j(d) based on

 using the locally weighted average method. For simplicity, we used the

uniform weight to calculate η̂
i,j(d). We also plotted the relative eigenvalues of Σ̂

η,jj(d, d′) for

j = 1, 2 in Figure 3 (a), where the relative eigenvalues are defined as the ratios of the

eigenvalues over their sum. It is shown that the first two eigenvalues account for about 80%

of the total variation and the others quickly vanish to zero. We present the estimated

eigenfunctions corresponding to the largest two eigenvalues along with the true

eigenfunctions for j = 1, 2 in Figure 4. It shows that  can capture the main
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feature in the true eigenfunctions. The parameters of the spatial autoregressive model were

estimated by optimizing the REML function (17). We calculated the mean of the parameter

estimates based on the results from the 50 simulated data sets and obtained ρ̂ = 0.89 and

Σe(θ̂) given by

which are close to the true ρ = 0.9 and Σe(θ) = I900 ⊗ diag(0.0278, 0.04).

Next, we examine the predictive performance of the proposed model by applying the

prediction procedure in Section 2.3 to the simulated data. We splitted the data set into a test

set of 15 randomly selected subjects and a training set of the other 35 subjects. For each

subject in the test set, we considered the imaging data with 10%, 30%, and 50%

missingness, respectively. The pixels in Dmis were randomly sampled according to the

missingness. We first fitted the SGPP model to the training set and estimated the regression

coefficients, eigenvalue-eigenvector pairs, and the autoregressive model parameters. Then

we predicted the missing data in the test set and obtained the rtMSPE. We compare the

rtMSPE for the proposed model with those for VWLM, GLM+fPCA model, and GLM

+SAR model in Table 1. The SGPP model clearly outperforms the other methods. It is also

shown that accounting for the global and local spatial dependences substantially increases

the prediction accuracy.

3.2. Non-Gaussian Random Fields

We simulated data at all 900 pixels on a 30 × 30 phantom image for n = 50 subjects

according to (15) with εi = (εi(d1)T, … , εi(d900)T)T generated from a non-Gaussian random

field. A class of non-Gaussian random fields is obtained by squaring the Gaussian random

fields whose correlations are the square root of the desired correlations (Hyun et al., 2012).

We subtracted the mean vector from the non-Gaussian random vector thereby obtained and

scaled it so that the resulting εi can have zero mean vector and the covariance matrix Ψ (ρ,

θ), where ρ = 0.9 and θ was chosen in a way that Σe(θ) = I900 ⊗ diag(0.0278, 0.04). We

applied the predictive methods discussed above to the simulated data and obtained the

rtMSPE from the test set of 15 randomly selected subjects. The results are summarized in

Table 2, which shows that the SGPP model performs quite well even when the data have a

skewed distribution.

4. Real Data Analysis

We applied the SGPP model to the surface data of the left lateral ventricle. The surface data

set of the left lateral ventricle consists of 43 infants (23 males and 20 females) at the age 1.

The gestational ages of the 43 infants range from 234 to 295 days and their mean gestational

age is 263 days with standard deviation 12.8 days. The responses were based on the

SPHARM-PDM representation of lateral ventricle surfaces. We use the SPHARM-PDM

(Styner et al., 2004) shape representation to establish surface correspondence and align the

surface location vectors across all subjects. The sampled SPHARM-PDM is a smooth,
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accurate, fine-scale shape representation. The left lateral ventricle surface of each infant is

represented by 1002 location vectors with each location vector consisting of the spatial x, y,

and z coordinates of the corresponding vertex on the SPHARM-PDM surface.

We fitted the model (5) to the 3×1 coordinate vectors on the SPHARM-PDMs of the left

lateral ventricle. Specifically, we set xi = (1, Gi, Gageii)T, where Gi and Gagei, respectively,

denote the gender (1 for female and 0 for male) and the gestational age of the i-th infant. We

applied the estimation procedure described in Section 2.2. Figure 5 presents the estimated

regression coefficients β̂(d) associated with the x, y, and z coordinates on the left lateral

ventricle surface. The intercept surfaces (all panels in the first column of Figure 5) describe

the overall trend of the three coordinates. We present the relative eigenvalues and

eigenfunctions of Σ̂
η,jj(d, d′) for j = 1, 2, 3 in Figures 3 (b) and 6, respectively. We observe

that the first five eigenvalues account for more than 80% of the total variation and the others

quickly vanish to zero. We calculated the REML estimate ρ̂ and Σe(θ(d)).

We statistically tested the effects of the gender and gestational age on the x, y, and z

coordinates of the left lateral ventricle surface. Specifically, we calculated the Wald test

statistics and their corresponding p-values to test H0 : βj2(d) = 0 against H1 : βj2(d) ≠ 0 for

the gender effect and H0 : βj3(d) = 0 against H1 : βj3(d) ≠ 0 for the gestational age effect

across all voxels for j = 1, 2, 3. The −log10(p) values are shown in Figure 7(a)-(f). We

applied the false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995) to correct

the p-values for multiple comparisons, and the −log10(p) images for the resulting adjusted p-

values are shown in Figure 7 (g)-(l). The values that are greater than 1.3 indicate a

significant effect at 5% significance level; they indicate a highly significant effect at 1%

significance level if they are greater than 2.

No gender differences were found for all coordinates of the SPHARMPDM representation

of lateral ventricle surfaces. There are significant overall age effects on y and z coordinates

(Figure 7 (j) and (l)). It indicates that increased volumes occurring in the lateral ventricles

during the first year of life are due to widespread morphometric changes across the entire

shape (Figure 7). Anterior and posterior sections of the lateral ventricle experience a large

degree of outward change while the middle sections of the ventricle experience little change.

Differences are primarily localized in the frontal and occipital horns of the lateral ventricle

(Figure 7).

We randomly selected 13 infants and estimated the prediction error of the SGPP model by

(14). The voxels with missing data were randomly sampled according to 10%, 30%, and

50% missingness, respectively. We first fitted the model (5) to the training set of the other

30 infants to estimate the regression coefficients βj(d), eigenvalue-eigenvector pairs, and the

autoregressive model parameters. We used the fitted model to predict the missing coordinate

vectors in the test set and calculated the rtMSPE for each component of the vector. The

results are summarized in Table 3 along with the rtMSPE for the VWLM and GLM+fPCA

model, respectively. We find that the gains in the prediction accuracy are dramatic when

switching from VWLM to the SGPP model. For the case of 10% missingness, the rtMSPE

was reduced by 95 to 96% using the SGPP model as compared with VWLM for all three

components of the vector; it was also reduced by 92% as compared with GLM+fPCA
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model. For the case of 50% missingness, the decreases were still 90 to 92% as compared

with VWLM and 84% as compared with GLM+fPCA model for all three components of the

vector.

Table 3 shows that the SGPP model substantially increases the prediction accuracy

compared with the other two models. They also suggest that the fPCA model can effectively

capture the medium-to-long-range spatial dependence, but the fPCA model alone may not be

effective in accounting for local spatial dependence. In contrast, the SGPP model can

effectively account for the long-to-medium-to-short-range dependence leading to more

accurate prediction.

5. Discussion

We have proposed a spatial Gaussian predictive process (SGPP) framework for the spatial

analysis of imaging measures. The fPCA+SAR components in SGPP allow us to accurately

approximate the unstructured variancecovariance matrix of ultra-high dimensional data by

explicitly modeling the long-to-medium-to-short-range spatial dependence. Thus, due to the

computational efficiency of fPCA+SAR, SGPP is a powerful predictive model for

efficiently handling high-dimensional imaging data compared with other methods in the

literature (Bowman et al., 2008; Bowman, 2007; Derado et al., 2012; Groves et al., 2009;

Penny et al., 2005; Brezger et al., 2007; Smith and Fahrmeir, 2007; Guo et al., 2008). We

have developed a three-stage estimation procedure and presented a predictive method under

the SGPP model. Through simulation studies and a real data example, we have shown that

the SGPP model substantially outperforms VWLM, GLM+fPCA, and GLM+SAR in terms

of prediction accuracy.

While our prediction results in Table 3 can be used as a validation of SGPP in real

applications, SGPP and our prediction method can be used to directly solve missing data

problems in neuorimaging studies. For instance, missing data in some brain regions may

occur due to data acquisition limits and susceptibility artifact (see e.g. Higdon et al., 2004;

Vaden et al., 2012). The existing approaches for handling such missing imaging data are

primarily based on imputation methods, which do not account for the local and global spatial

correlation structures of imaging data (Higdon et al., 2004; Uijl et al., 2008). For example, in

(Uijl et al., 2008), a single imputation method based on linear regression has been used to

replace missing positron emission tomography data in order to predict epilepsy surgery

outcome. Recently, in (Vaden et al., 2012), a regression based multiple imputation approach

also leverages the local spatial information in fMRI data by using imaging data in

neighboring voxels as covariates in the regression model. However, these multiple

imputation procedures are not practical under the presence of the large amounts of imaging

data besides its heavy numerical burden (Higdon et al., 2004). In contrast, as shown in the

simulations and real data example, SGPP can predict the missing data very accurately even

for large proportion of missingness as large as 50%.

Our SGPP can be regarded as a natural extension of spatial mixed effects models developed

for the analysis of geostatistical data Sang and Huang (2012). The predictive process in the

spatial mixed effects models also uses some fixed basis functions to capture major variation
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in geostatistical data Banerjee et al. (2008). However, for geostatistical data, basis functions

are pre-specified and the Nyström method in (Sang and Huang, 2012; Cressie and

Johannesson, 2008b; Stein, 2008), whereas SGPP uses fPCA to directly estimate spatial

basis functions and allow varying regression coefficients across the brain, since most

neuroimaging studies usually contain multiple subjects.

Several important issues need to be addressed in future research. The basic setup of the

proposed model can be extended to neuroimaging data obtained from clustered studies (e.g.,

longitudinal, twin, or familial). Longitudinal neuroimaging studies are primarily carried out

in order to characterize individual change in neuroimaging measurements (e.g., volumetric

and morphometric measurements) over time, and the effect of some covariates (or

predictors) of interest, such as diagnostic status and gender, on the individual change (Evans

and Group., 2006). A key feature of longitudinal neuroimaging data is that it usually has a

strong temporal correlation, that is, imaging measurements of the same individual usually

exhibit positive correlation and the strength of the correlation decreases with the time

separation. In this case, we will extend (1) by including a longitudinal fPCA model in

(Greven et al., 2010b; Yuan et al., 2013) to incorporate the long-to-medium range of spatial-

temporal correlation and a longitudinal SAR model to incorporate the medium-to-short

range of spatial-temporal correlation. In this case, one may gain statistical power of testing

hypothesis of interest by explicitly modeling spatial-temporal correlation (Derado et al.,

2010).

The key idea of SGPP can also be extended to predict ‘missing’ neuroimaging data in

different scenarios. For instance, SGPP can be extended to predict follow-up structural

alternation and neural activity based on an individual’s baseline image (Derado et al., 2012;

Bowman et al., 2008). Moreover, SGPP may be useful for predicting clinical outcomes, such

as disease diagnosis and prevention (Ryali et al., 2010; Hinrichs et al., 2009; Martino et al.,

2008). Although a large family of methods has been developed for supervised learning

(Hastie et al., 2009), most supervised learning methods coupled with dimension reduction

methods do not account for the long-tomedium-to-short range spatial structure of imaging

data. As shown above, since SGPP provides an excellent ‘low-dimensional’ representation

of highdimensional imaging data, we may use such low-dimensional representation based on

SGPP as a feature vector to build a prediction model (e.g., linear regression, logistic

regression, or support vector machine) to predict clinical outcomes.

Appendix A. Estimation Procedure for (ρ, θ)

Since ei ~ N (0, Σe(θ)), it follows from(10) that εi is a multivariate normal random vector

with zero mean and covariance matrix given by

(16)

where Σe(θ) is a block diagonal matrix with elements Σe(θ(d)) across d ∈ D. We assume that

Σe(θ(d)) = [L(θ(d))L(θ(d))T]−1, where L (θ(d)) is a J × J lower triangular matrix with strictly

positive diagonal entries of the Cholesky factorization of Σe(θ(d))−1.
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To estimate (ρ, θ), we proceed as follows. First, according to (5), (6), and (9), we can

estimate εi,j(d) by using . We define ε̂
i =

(ε̂
i(d1)T,…, ε̂

i(dM)T)T and . Second, we calculate a restricted maximum

likelihood estimate (REML) of (ρ, θ) by maximizing a log-restricted maximum likelihood

function given by

(17)

where  and Z is an M J × J matrix of

(IJ, … , IJ)T. Furthermore, Ψ(ρ, θ)−1 is given by

Although Ψ(ρ, θ) is an extremely large matrix, Ψ(ρ, θ)−1 is a very sparse matrix, which

makes the numerical optimization of L(ρ, θ|ε̂) feasible.

To optimize (17) with respect to ρ and θ, we used a grid search method for the parameter ρ

ranging between 0.1 and 0.99 with finer grids in the upper range of ρ. For a fixed value of ρ,

we optimized the REML function using the Matlab function fmincon, which implements a

Quasi-Newton method (Broyden-Fletcher-Goldfarb-Shanno method). The computation was

done in matlab on Intel Corei7-2700K, CPU 3.50 GHz and 32 GB RAM. For one replicate

of bivariate data at 900 pixels with 50 subjects it took about 70 minutes to optimize the

REML function. The computational time for the SGPP model might be reduced by using

other programming languages, such as C++.

Appendix B. Spatial Prediction using Kriging

We describe the spatial prediction using kriging at Step (III.2) in detail. Since predictions

are made for multiple measurements at each voxel, we apply a co-kriging technique to

obtain ε̂
i0;T E(d) for d ∈ Dmis. The co-kriging predictor is a best linear unbiased predictor

(BLUP) given by

(18)

where each Гm is a J × J matrix and (…, Гm, …) is given by

(19)

where (Σε (dm, dm′)) denotes the covariance matrix of (…,εi0(dm)T, …)T for dm ∈ D\Dmis.

Then the matrices in the RHS of (19) are obtained from (16) with the REML estimates,

(^ρTR, θ̂TR) plugged in.
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Highlights

• Develop a SGPP for predictive analysis of neuroimaging data.

• Useful for characterizing spatial correlation of neuroimaging data.

• Achieving high prediction accuracy for simulated and real imaging data.

Hyun et al. Page 18

Neuroimage. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1.
A diagram for the SGPP model with three components including a general linear model

(GLM) for characterizing the association between imaging measure and covariates of

interest, a functional principal component model (fPCA) to capture the global spatial

dependence, and a multivariate spatial autoregressive model (SAR) to capture the local

spatial dependence. The first stage of the estimation procedure is the least squares estimation

of the regression coefficients β(d) = [β1(d), …, βJ(d)], the second stage is the nonparametric

estimation of Ση and its associated eigenvalues and eigenfunctions, and the third stage is the

restricted maximum likelihood estimation of all the parameters in the spatial autoregressive

model.
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Fig. 2.
Simulation results for the Gaussian random field: (a) true β11(d); (b) true β12(d); (c) true

β21(d); (d) true β22(d); (e) β̂
11(d); (f) β̂

12(d); (g) β̂
21(d); (h) β̂

22(d).
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Fig. 3.
The first 10 relative eigenvalues of Σ̂η,jj (d,d′) for (a) simulation results for the Gaussian

random field and (b) the surface data of the left lateral ventricle.
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Fig. 4.
Simulation results for the Gaussian random field: (a) true ψ1,1(d); (b) true ψ1,2(d); (c) true

ψ2,1(d); (d) true ψ2,2(d); (e) ψ1̂,1(d); (f) ψ̂
1,2(d); (g) ψ̂

2,1(d); and (h) ψ̂
2,2(d).
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Fig. 5.
Results from the surface data of the left lateral ventricle: (a) and (b) β̂

11(d), β̂
12(d), and

β̂13(d) (from left to right); (c) and (d) β̂
21(d), β̂

22(d), and β̂
23(d) (from left to right); (e) and

(f) β̂
31(d), β̂

32(d), and β̂
33(d) (from left to right).
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Fig. 6.
Results from the surface data of the left lateral ventricle: (a) and (b) ψ̂

1,1(d), ψ̂
1,2(d), and

ψ̂
1,3(d) (from left to right); (c) and (d) ψ̂

2,1(d), ψ2̂,2(d), and ψ̂
2,3(d) (from left to right); (e)

and (f) ψ̂
3,1(d), ψ̂

3,2(d), and ψ̂
3,3(d) (from left to right).
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Fig. 7.
Results from the surface data of the left lateral ventricle: –log10(p) maps for testing H0 :

β12(d) = 0 for raw p-value in (a) and for corrected p-value in (g); those for testing H0 : β13(d)

= 0 for raw p-value in (b) and for corrected p-value in (h); those for testing H0 : β22(d) = 0

for raw p-value in (c) and for corrected p-value in (i); those for testing H0 : β23(d) = 0 for

raw p-value in (d) and for corrected p-value in (j); those for testing H0 : β32(d) = 0 for raw p-

value in (e) and for corrected p-value in (k); those for testing H0 : β33(d) = 0 for raw p-value

in (f) and for corrected p-value in (l).
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Table 3

rtMSPE for the surface data of the left lateral ventricle

Missingness VWLM GLM+fPCA SGPP

10% x-coordinate 1.9272 0.9810 0.0738

y-coordinate 2.2448 1.3455 0.1067

z-coordinate 2.1554 1.1753 0.0926

30% x-coordinate 1.9337 1.0197 0.1156

y-coordinate 2.2655 1.3827 0.1657

z-coordinate 2.1906 1.2069 0.1446

50% x-coordinate 1.9263 1.0294 0.1615

y-coordinate 2.2012 1.3471 0.2204

z-coordinate 2.1862 1.1830 0.1924
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