1,230 research outputs found
Generalized uncertainty principle and correction value to the black hole entropy
Recently, there has been much attention devoted to resolving the quantum
corrections to the Bekenstein-Hawking entropy of the black hole. In particular,
many researchers have expressed a vested interest in the coefficient of the
logarithmic term of the black hole entropy correction term. In this paper, we
calculate the correction value of the black hole entropy by utilizing the
generalized uncertainty principle and obtain the correction term caused by the
generalized uncertainty principle. Because in our calculation we think that the
Bekenstein-Hawking area theorem is still valid after considering the
generalized uncertainty principle, we derive that the coefficient of the
logarithmic term of the black hole entropy correction term is negative. This
result is different from the known result at present. Our method is valid not
only for single horizon spacetime but also for double horizons spacetime. In
the whole process, the physics idea is clear and calculation is simple. It
offers a new way for studying the condition that Bekenstein-Hawking area
theorem is valid
Effect of B2O3 and P2O5 on fluorosilicic mica glass-ceramic sintering process
To study the effect of B2O3 and P2O5 on fluorosilicic mica glass-ceramic sintering process, six sets of K2O-MgO-SiO2-F glasses were prepared by using B2O3 and P2O5 as sintering aid, respectively. Green bodies of the glass powder were formed by gel casting and sintered at 800, 850, 900, 950, 1000oC for 6 hours, resectively. The sintering and crystallization behavior were studied by thermal shrinkage , X-ray diffraction and SEM. The results showed that the shrinkage rate of the glass with 2wt% B2O3 and P2O5 was highest, while the rate of the glass with 5wt% P2O5 was lowest. An additional crystal other than fluorosilicic mica was precipitated in the glass ceramics generated by sintering of glass powder. The present results confirmed that the glass powder of pure K2O-MgO-SiO2-Fsystem had poor sinterability, while glass powder with minor addition of P2O5 and/or B2O3 showed good sinterability. This result was also verified by SEM
Surgical excision promotes tumor growth and metastasis by promoting expression of MMP-9 and VEGF in a breast cancer model
Surgery is still the main curative therapeutic modality for breast cancer. Although surgery often results in the successful removal of the primary tumor, its process could increase the risk of metastases of residual cancer cells. Understanding of the connection between breast cancer metastasis and surgical wound will lead to the establishment of a proper treatment strategy for postoperative cancer patient. Aim: To study the influence of surgical procedure on the metastasis of primary breast cancer. Methods: We established MDA-MB-435 human breast cancer xenograft model. Levels of Pro-matrix metalloproteinase 9 (Pro-MMP-9) and vascular endothelial growth factor (VEGF) in host serum and tumors were tested at different time points with ELISA and zymography and correlated to tumor growth and postoperative metastasis. Results: Our study demonstrated surgical wound had promoting effect on tumor growth and pulmonary metastasis of human breast cells, if tumor cells remain in bodies. This effect might be related to the postoperative interaction of cancer and host cells, which resulted in expression of Pro-MMP-9. Surgical process could also increase the VEGF expression in tumor tissues. Conclusions: Surgical wound-produced host Pro-MMP-9 and tumor cell VEGF might be important mediators leading to metastasis of residual breast cancer after surgery.Π₯ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π»Π΅ΡΠ΅Π½ΠΈΠ΅ Π΄ΠΎ ΡΠΈΡ
ΠΏΠΎΡ ΠΎΡΡΠ°Π΅ΡΡΡ Π³Π»Π°Π²Π½ΡΠΌ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠΌ ΠΏΡΠΈ Π»Π΅ΡΠ΅Π½ΠΈΠΈ Π±ΠΎΠ»ΡΠ½ΡΡ
ΡΠ°ΠΊΠΎΠΌ ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ
ΠΆΠ΅Π»Π΅Π·Ρ. Π₯ΠΎΡΡ Ρ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ΄Π°Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ Π² Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π΅ ΡΠ»ΡΡΠ°Π΅Π² Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ, Π² ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ ΠΎΠ½ΠΎ ΠΌΠΎΠΆΠ΅Ρ
ΡΠ²Π΅Π»ΠΈΡΠΈΡΡ ΡΠΈΡΠΊ ΠΌΠ΅ΡΠ°ΡΡΠ°Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ. ΠΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΠΌΠ΅ΡΠ°ΡΡΠ°Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΈ ΡΠ°ΠΊΠ΅
ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ ΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ°Π½ΠΎΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ Π²ΡΠ±ΡΠ°ΡΡ Π½Π°ΠΈΠ»ΡΡΡΡΡ ΡΡΡΠ°ΡΠ΅Π³ΠΈΡ ΠΏΠΎΡΡΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ. Π¦Π΅Π»Ρ:
ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Ρ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²Π° Π½Π° ΠΌΠ΅ΡΠ°ΡΡΠ°Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ. ΠΠ΅ΡΠΎΠ΄Ρ: Π±ΡΠ»Π° ΡΠΎΠ·Π΄Π°Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠ°ΠΊΠ°
ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Π² Π²ΠΈΠ΄Π΅ ΠΊΡΠ΅Π½ΠΎΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠ° MDA-MB-435. Π£ΡΠΎΠ²Π΅Π½Ρ Pro-ΠΌΠ°ΡΡΠΈΡΠ½ΠΎΠΉ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ 9
(Pro-MMP-9) ΠΈ ΡΠ°ΠΊΡΠΎΡΠ° ΡΠΎΡΡΠ° ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΡ ΡΠΎΡΡΠ΄ΠΎΠ² (VEGF) Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠ΅ ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠ° ΠΈ ΠΎΠΏΡΡ
ΠΎΠ»ΡΡ
ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈΡΡ Π² ΡΠ°Π·Π½ΡΠ΅
Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ELISA ΠΈ Π·ΠΈΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Π½Π°Π»ΠΈΡΠΈΠ΅ ΠΊΠΎΡΠ΅Π»Π»ΡΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π°- ΠΈ Π·ΠΈΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Π½Π°Π»ΠΈΡΠΈΠ΅ ΠΊΠΎΡΠ΅Π»Π»ΡΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π° ΠΈ Π·ΠΈΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Π½Π°Π»ΠΈΡΠΈΠ΅ ΠΊΠΎΡΠ΅Π»Π»ΡΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌΠΈ,
ΡΠΎΡΡΠΎΠΌ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ ΠΈ ΠΏΠΎΡΡΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΌΠΈ ΠΌΠ΅ΡΠ°ΡΡΠ°Π·Π°ΠΌΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ: Π±ΡΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½Π°Ρ ΡΠ°Π½Π° ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ
ΡΠΎΡΡΡ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ ΠΈ Π΅Π΅ ΠΌΠ΅ΡΠ°ΡΡΠ°Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π² Π»Π΅Π³ΠΊΠΈΠ΅ Π² ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΠΏΡΠΈ ΡΠ΄Π°Π»Π΅Π½ΠΈΠΈ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ Π² ΡΠ°Π½Π΅
ΠΎΡΡΠ°ΡΡΡΡ ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΠ΅ ΠΊΠ»Π΅ΡΠΊΠΈ. ΠΡΠΎ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΠΏΠΎΡΡΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΡ
ΠΈ ΠΎΠΊΡΡΠΆΠ°ΡΡΠΈΡ
ΠΈΡ
Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Pro-MMP-9. Π£Π΄Π°Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ ΠΌΠΎΠΆΠ΅Ρ ΡΠ°ΠΊΠΆΠ΅ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΠΎΠ²Π°ΡΡ
ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ VEGF ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΠΌΠΈ ΠΊΠ»Π΅ΡΠΊΠ°ΠΌΠΈ. ΠΡΠ²ΠΎΠ΄Ρ: Pro-MMP-9, ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡΡΠ΅ΠΌΡΠΉ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΡΠΌΠΈ ΠΊΠ»Π΅ΡΠΊΠ°ΠΌΠΈ,
ΠΎΠΊΡΡΠΆΠ°ΡΡΠΈΠΌΠΈ ΠΏΠΎΡΡΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ ΡΠ°Π½Ρ, Π° ΡΠ°ΠΊΠΆΠ΅ VEGF, ΠΏΡΠΎΠ΄ΡΡΠΈΡΡΠ΅ΠΌΡΠΉ ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΠΌΠΈ ΠΊΠ»Π΅ΡΠΊΠ°ΠΌΠΈ, ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Π²Π°ΠΆΠ½ΡΠΌΠΈ
ΠΌΠ΅Π΄ΠΈΠ°ΡΠΎΡΠ°ΠΌΠΈ ΠΌΠ΅ΡΠ°ΡΡΠ°Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ ΠΏΠΎΡΠ»Π΅ Ρ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²Π°
Isotope effects and possible pairing mechanism in optimally doped cuprate superconductors
We have studied the oxygen-isotope effects on T_{c} and in-plane penetration
depth \lambda_{ab}(0) in an optimally doped 3-layer cuprate
Bi_{1.6}Pb_{0.4}Sr_{2}Ca_{2}Cu_{3}O_{10+y} (T_{c} \sim 107 K). We find a small
oxygen-isotope effect on T_{c} (\alpha_{O} = 0.019), and a substantial effect
on \lambda_{ab} (0) (\Delta \lambda_{ab} (0)/\lambda_{ab} (0) = 2.5\pm0.5%).
The present results along with the previously observed isotope effects in
single-layer and double-layer cuprates indicate that the isotope exponent
\alpha_{O} in optimally doped cuprates is small while the isotope effect on the
in-plane effective supercarrier mass is substantial and nearly independent of
the number of the CuO_{2} layers. A plausible pairing mechanism is proposed to
explain the isotope effects, high-T_{c} superconductivity and tunneling spectra
in a consistent way.Comment: 5 pages, 4 figure
High-pressure behaviors of carbon nanotubes
In this paper, we have reviewed the experimental and theoretical studies on pressure-induced polygonization, ovalization, racetrackβshape deformation, and polymerization of carbon nanotubes (CNTs). The corresponding electronic, optical, and mechanical changes accompanying these behaviors have been discussed. The transformations of armchair (n, n) CNT bundles (n = 2, 3, 4, 6, and 8) under hydrostatic or nonhydrostatic pressure into new carbons, including recently proposed superhard bct-Cβ, Cco-Cβ, and B-B1AL2R2 carbon phases have also been demonstrated. Given the diversity of CNTs from various chiralities, diameters, and arrangements, pressure-induced CNT polymerization provides a promising approach to produce numerous novel metastable carbons exhibiting unique electronic, optical, and mechanical characteristics.Π ΠΎΠ·Π³Π»ΡΠ½ΡΡΠΎ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Ρ ΡΠ° ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ½Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π· ΡΠ½Π΄ΡΠΊΠΎΠ²Π°Π½ΠΎΡ ΡΠΈΡΠΊΠΎΠΌ ΠΏΠΎΠ»ΡΠ³ΠΎΠ½ΡΠ·Π°ΡΡΡ, ΠΎΠ²Π°Π»ΡΠ·Π°ΡΡΡ, Π΄Π΅ΡΠΎΡΠΌΠ°ΡΡΡ Ρ ΡΠΎΡΠΌΡ Π±ΡΠ³ΠΎΠ²ΠΎΡ Π΄ΠΎΡΡΠΆΠΊΠΈ Ρ ΠΏΠΎΠ»ΡΠΌΠ΅ΡΠΈΠ·Π°ΡΡΡ Π²ΡΠ³Π»Π΅ΡΠ΅Π²ΠΈΡ
Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ (ΠΠΠ’). ΠΠ±Π³ΠΎΠ²ΠΎΡΠ΅Π½ΠΎ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½Ρ Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½Ρ, ΠΎΠΏΡΠΈΡΠ½Ρ Ρ ΠΌΠ΅Ρ
Π°Π½ΡΡΠ½Ρ Π·ΠΌΡΠ½ΠΈ, ΡΠΎ ΡΡΠΏΡΠΎΠ²ΠΎΠ΄ΠΆΡΡΡΡ ΡΡ ΠΏΡΠΎΡΠ΅ΡΠΈ. Π’Π°ΠΊΠΎΠΆ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΎΠ²Π°Π½ΠΎ ΠΏΠ΅ΡΠ΅ΡΠ²ΠΎΡΠ΅Π½Π½Ρ Π² ΠΠΠ’ Ρ ΡΠΎΡΠΌΡ ΠΊΡΡΡΠ»Π° (n, n), Π·ΡΠ±ΡΠ°Π½ΠΈΡ
Π² ΠΏΡΡΠΎΠΊ (n = 2, 3, 4, 6 Ρ 8) ΠΏΡΠ΄ Π³ΡΠ΄ΡΠΎΡΡΠ°ΡΠΈΡΠ½ΠΈΠΌ Π°Π±ΠΎ Π½Π΅Π³ΡΠ΄ΡΠΎΡΡΠ°ΡΠΈΡΠ½ΠΈΠΌ ΡΠΈΡΠΊΠΎΠΌ Π² Π½ΠΎΠ²Ρ Π²ΡΠ³Π»Π΅ΡΠ΅Π²Ρ Π°Π»ΠΎΡΡΠΎΠΏΠΈ, Π² ΡΠΎΠΌΡ ΡΠΈΡΠ»Ρ Π½Π΅Π΄Π°Π²Π½ΠΎ Π·Π°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Ρ Π½Π°Π΄ΡΠ²Π΅ΡΠ΄Ρ bct-Cβ, Cco-Cβ Ρ B-B1AL2R2-Π²ΡΠ³Π»Π΅ΡΠ΅Π²Ρ ΡΠ°Π·ΠΈ. Π ΡΠ·Π½ΠΎΠΌΠ°Π½ΡΡΠ½ΡΡΡΡ ΠΠΠ’ Π· ΡΡΠ·Π½ΠΈΠΌΠΈ Ρ
ΡΡΠ°Π»ΡΠ½ΡΡΡΡ, Π΄ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΡΠ° ΡΠΏΠ°ΠΊΠΎΠ²ΠΊΠ°ΠΌΠΈ, Π° ΡΠ°ΠΊΠΎΠΆ ΠΏΠΎΠ»ΡΠΌΠ΅ΡΠΈΠ·Π°ΡΡΡ ΠΠΠ’, Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Π½Π° ΡΠΈΡΠΊΠΎΠΌ, Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΉ ΠΏΡΠ΄Ρ
ΡΠ΄ Π΄Π»Ρ ΠΎΡΡΠΈΠΌΠ°Π½Π½Ρ ΡΠΈΡΠ»Π΅Π½Π½ΠΈΡ
Π½ΠΎΠ²ΠΈΡ
ΠΌΠ΅ΡΠ°ΡΡΠ°Π±ΡΠ»ΡΠ½ΠΈΡ
Π²ΡΠ³Π»Π΅ΡΠ΅Π²ΠΈΡ
ΡΠ°Π·, ΡΠΎ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΡΡΡΡ ΡΠ½ΡΠΊΠ°Π»ΡΠ½Ρ Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½Ρ, ΠΎΠΏΡΠΈΡΠ½Ρ Ρ ΠΌΠ΅Ρ
Π°Π½ΡΡΠ½Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ.Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΈ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ»ΠΈΠ³ΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ, ΠΎΠ²Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ, Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Π² ΡΠΎΡΠΌΠ΅ Π±Π΅Π³ΠΎΠ²ΠΎΠΉ Π΄ΠΎΡΠΎΠΆΠΊΠΈ ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ
Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ (Π£ΠΠ’). ΠΠ±ΡΡΠΆΠ΄Π΅Π½Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠ΅, ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ, ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°ΡΡΠΈΠ΅ ΡΡΠΈ ΠΏΡΠΎΡΠ΅ΡΡΡ. Π’Π°ΠΊΠΆΠ΅ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π½Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π² Π£ΠΠ’ Π² ΡΠΎΡΠΌΠ΅ ΠΊΡΠ΅ΡΠ»Π° (n, n), ΡΠΎΠ±ΡΠ°Π½Π½ΡΡ
Π² ΠΏΡΡΠΎΠΊ (n = 2, 3, 4, 6 ΠΈ 8) ΠΏΠΎΠ΄ Π³ΠΈΠ΄ΡΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈΠ»ΠΈ Π½Π΅Π³ΠΈΠ΄ΡΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π² Π½ΠΎΠ²ΡΠ΅ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΠ΅ Π°Π»Π»ΠΎΡΡΠΎΠΏΡ, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ Π½Π΅Π΄Π°Π²Π½ΠΎ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΠ΅ ΡΠ²Π΅ΡΡ
ΡΠ²Π΅ΡΠ΄ΡΠ΅ bct-Cβ, Cco-Cβ ΠΈ B-B1AL2R2-ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΠ΅ ΡΠ°Π·Ρ. Π Π°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·ΠΈΠ΅ Π£ΠΠ’ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ Ρ
ΠΈΡΠ°Π»ΡΠ½ΠΎΡΡΡΡ, Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΠΈ ΡΠΏΠ°ΠΊΠΎΠ²ΠΊΠ°ΠΌΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΡ Π£ΠΠ’, Π²ΡΠ·Π²Π°Π½Π½Π°Ρ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΡ
Π½ΠΎΠ²ΡΡ
ΠΌΠ΅ΡΠ°ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΡ
ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ
ΡΠ°Π·, Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΡΡΠΈΡ
ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠ΅, ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ
Large extraordinary Hall effect in [Pt/Co]5/Ru/[Co/Pt]5 multilayer
This Brief Report presents giant extraordinary Hall effect (EHE) in the Ru-mediated antiferromagnetically coupled [Pt/Co]5/Ru/[Co/Pt]5 multilayers (MLs) compared with those MLs without the Ru spacer. The enhancement of the EHE is attributed to the strong Ru/Co interface scattering. Through the variation in the Pt layer thickness and the temperature, we determine the relation between the Hall voltage and the longitudinal resistivity. It is found that the conventional scaling analysis has difficulties in consistently interpreting our data
Boty-II, a novel LTR retrotransposon in Botrytis cinerea B05.10 revealed by genomic sequence
Botrytis cinerea is a necrotrophic pathogen causing pre- and
post-harvest diseases in at least 235 plant species. It manifests
extraordinary genotype and phenotype variation. One of the causes of
this variation is transposable elements. Two transposable elements have
been discovered in this fungus, the retrotransposon (Boty), and the
transposon (Flipper). In this work, two complete (Boty-II-76 and
Boty-II-103) and two partial (Boty-II-95 and Boty-II-141) long terminal
repeat (LTR) retrotransposons were identified by an in silico genomic
sequence analysis. Boty-II-76 and Boty-II-103 contain 6439 bp
nucleotides with a pair of LTRs at both ends, and an internal deduced
pol gene encoding a polyprotein with reverse transcriptase and DDE
integrase domains. They are flanked by 5 bp direct repeats (ACCAT,
CTTTC). In Boty-II-141, two LTRs at both ends, and a partial internal
pol gene encoding a protein with a DDE integrase domain were
identified. In Boty-II-95, a right LTR and a partial internal pol gene
encoding a protein with no conserved domains were identified. Boty-II
uses a self-priming mechanism to initiate synthesis of reverse
transcripts. The sequence of the presumed primer binding site for
first-strand reverse transcription is 5'-TTGTACCAT-3'. The
polypurine-rich sequence for plus-strand DNA synthesis is
5'-GCCTTGAGCGGGGGGTAC-3'. Fourteen Boty-II LTRs that contain 125-158 bp
nucleotides and share 69.1 ~ 100% identities with the short inverted
terminal repeats of 5 bp (TGTCA\u2026TGACA) were discovered. Analysis
of structural features and phylogeny revealed that Boty-II is a novel
LTR retrotransposon. It could potentially be used as a novel molecular
marker for the investigation of genetic variation in B. cinerea
Ultrastrong conductive in situ composite composed of nanodiamond incoherently embedded in disordered multilayer graphene
Traditional ceramics or metals cannot simultaneously achieve ultrahigh strength and high electrical conductivity. The elemental carbon can form a variety of allotropes with entirely different physical properties, providing versatility for tuning mechanical and electrical properties in a wide range. Here, by precisely controlling the extent of transformation of amorphous carbon into diamond within a narrow temperatureβpressure range, we synthesize an in situ composite consisting of ultrafine nanodiamond homogeneously dispersed in disordered multilayer graphene with incoherent interfaces, which demonstrates a Knoop hardness of up to ~53βGPa, a compressive strength of up to ~54βGPa and an electrical conductivity of 670β1,240βSβm(β1) at room temperature. With atomically resolving interface structures and molecular dynamics simulations, we reveal that amorphous carbon transforms into diamond through a nucleation process via a local rearrangement of carbon atoms and diffusion-driven growth, different from the transformation of graphite into diamond. The complex bonding between the diamond-like and graphite-like components greatly improves the mechanical properties of the composite. This superhard, ultrastrong, conductive elemental carbon composite has comprehensive properties that are superior to those of the known conductive ceramics and C/C composites. The intermediate hybridization state at the interfaces also provides insights into the amorphous-to-crystalline phase transition of carbon
Identifying topological edge states in 2D optical lattices using light scattering
We recently proposed in a Letter [Physical Review Letters 108 255303] a novel
scheme to detect topological edge states in an optical lattice, based on a
generalization of Bragg spectroscopy. The scope of the present article is to
provide a more detailed and pedagogical description of the system - the
Hofstadter optical lattice - and probing method. We first show the existence of
topological edge states, in an ultra-cold gas trapped in a 2D optical lattice
and subjected to a synthetic magnetic field. The remarkable robustness of the
edge states is verified for a variety of external confining potentials. Then,
we describe a specific laser probe, made from two lasers in Laguerre-Gaussian
modes, which captures unambiguous signatures of these edge states. In
particular, the resulting Bragg spectra provide the dispersion relation of the
edge states, establishing their chiral nature. In order to make the Bragg
signal experimentally detectable, we introduce a "shelving method", which
simultaneously transfers angular momentum and changes the internal atomic
state. This scheme allows to directly visualize the selected edge states on a
dark background, offering an instructive view on topological insulating phases,
not accessible in solid-state experiments.Comment: 17 pages, 10 figures. Revised and extended version, to appear in EJP
Special Topic for the special issue on "Novel Quantum Phases and Mesoscopic
Physics in Quantum Gases". Extended version of arXiv:1203.124
- β¦