101,476 research outputs found

    Comparison of differential gain in single quantum well and bulk double heterostructure lasers

    Get PDF
    The differential gain in single quantum well and bulk double heterostructure lasers is compared. In variance with previous predictions, no differential gain enhancement is found in single quantum well structure lasers at room temperature. Only at low temperatures do the quantum well lasers possess higher differential gain than bulk double heterostructure lasers. The results have important implications in the area of high speed phenomena for these devices

    A comparison of amplitude-phase coupling and linewidth enhancement in semiconductor quantum-well and bulk lasers

    Get PDF
    The amplitude-phase coupling factor α (linewidth enhancement factor) is compared for typical semiconductor quantum-well and bulk double heterostructure lasers. As a direct consequence of the reduction of the differential gain, there is no reduction of α in single-quantum-well lasers compared to bulk lasers. The number of quantum wells strongly affects the amplitude-phase coupling in quantum-well lasers. It is shown that the interband transition induced amplitude-phase coupling dominates that induced by the plasma effect of carriers in typical quantum-well lasers. By considering the spontaneous emission factor in the spectral linewidth, the authors show that there is an optimal number of quantum wells for achieving the narrowest spectral linewidth

    The gain and carrier density in semiconductor lasers under steady-state and transient conditions

    Get PDF
    The carrier distribution functions in a semiconductor crystal in the presence of a strong optical field are obtained. These are used to derive expressions for the gain dependence on the carrier density and on the optical intensity-the gain suppression effect. A general expression for high-order nonlinear gain coefficients is obtained. This formalism is used to describe the carrier and power dynamics in semiconductor lasers above and below threshold in the static and transient regimes

    Iterative Solutions for Low Lying Excited States of a Class of Schroedinger Equation

    Full text link
    The convergent iterative procedure for solving the groundstate Schroedinger equation is extended to derive the excitation energy and the wave function of the low-lying excited states. The method is applied to the one-dimensional quartic potential problem. The results show that the iterative solution converges rapidly when the coupling gg is not too small.Comment: 14 pages, 4 figure

    Groundstate with Zero Eigenvalue for Generalized Sombrero-shaped Potential in NN-dimensional Space

    Full text link
    Based on an iterative method for solving the goundstate of Schroedinger equation, it is found that a kind of generalized Sombrero-shaped potentials in N-dimensional space has groundstates with zero eigenvalue. The restrictions on the parameters in the potential are discussed.Comment: 8 pages, 3 figure

    Correction function in the Lidar equation and the solution techniques for CO2 Lidar date reduction

    Get PDF
    For lidar systems with long laser pulses the unusual behavior of the near-range signals causes serious difficulties and large errors in reduction. The commonly used lidar equation is no longer applicable since the convolution of the laser pulse with the atmospheric parameter distributions should be taken into account. It is important to give more insight into this problem and find the solution techniques. Starting from the original equation, a general form is suggested for the single scattering lidar equation where a correction function Cr is introduced. The correction Function Cr(R) derived from the original equation indicates the departure from the normal lidar equation. Examples of Cr(R) for a coaxial CO2 lidar system are presented. The Differential Absorption Lidar (DIAL) errors caused by the differences of Cr(R) for H2O measurements are plotted against height

    Gravitational-Wave Implications for the Parity Symmetry of Gravity at GeV Scale

    No full text
    Gravitational waves generated by the coalescence of compact binary open a new window to test the fundamental properties of gravity in the strong-field and dynamical regime. In this work, we focus on the parity symmetry of gravity which, if broken, can leave imprints on the waveform of gravitational wave. We construct generalized waveforms with amplitude and velocity birefringence due to parity violation in the effect field theory formalism, then analyze the open data of the ten binary black-hole merger events and the two binary neutron-star merger events detected by LIGO and Virgo collaboration. We do not find any signatures of violation of gravitational parity conservation, thereby setting the lower bound of the parity-violating energy scale to be 0.070.07 GeV. This presents the first observational evidence of the parity conservation of gravity at high energy scale, about 17 orders of magnitude tighter than the constraints from the Solar system tests and binary pulsar observation. The third-generation gravitational-wave detector is capable of probing the parity-violating energy scale at O(102)\mathcal{O}(10^2) GeV

    Correction of the definition of mass-flow parameter in dynamic inflow modelling

    Get PDF
    No abstract available

    Charmonium in Medium: From Correlators to Experiment

    Get PDF
    We set up a framework in which in-medium charmonium properties are constrained by thermal lattice QCD and subsequently implemented into a thermal rate equation enabling the comparison with experimental data in heavy-ion collisions. Specifically, we evaluate phenomenological consequences for charmonium production originating from two different scenarios in which either the free or the internal energy are identified with the in-medium 2-body potential between charm and anti-charm quarks. These two scenarios represent J/ψJ/\psi "melting temperatures" of approximately 1.25\,TcT_c ("weak binding") and 2\,TcT_c ("strong binding"), respectively. Within current uncertainties in dissociation rates and charm-quark momentum spectra, both scenarios can reproduce the centrality dependence of inclusive J/ψJ/\psi yields in nuclear collisions at SPS and RHIC reasonably well. However, the "strong-binding" scenario associated the the internal energy as the potential tends to better reproduce current data on transverse momentum spectra at both SPS and RHIC.Comment: 18 pages, 30 figure
    corecore