28 research outputs found

    A heat pipe cooled modular reactor concept for manned lunar base application

    Get PDF
    ABSTRACT A lithium heat pipe cooled modular fast reactor (HPCMR) power system concept has been developed for manned lunar base application. The system is designed to use the static thermoelectric conversion module to produce over 100kW electricity for up to ten years. Waste heat is rejected by potassium heat pipe radiator. This system has advantages of low mass, long lifetime, no pumped liquid coolant, and no single point of failure. Main parameters of the system are also given in this paper. INTRODUCTION Early prior research demonstrated the superiority of ceramics for bearings (1, 2) and the existence of elastohydrodynamic (ehd) lubricant films at ball and roller contacts (3), the calculation of which is now an accepted part of bearing engineering. These new concepts are now used in the design of lubrication systems with solid lubricants that operate in much more severe environments than oils and greases (4, 5). Proprietary computer codes and unique patented bearing configurations for optimizing the performance of bearing/solidlubricant systems have been developed (6, 7 and 8). In this way, patented self-contained solid-lubricated all-steel and hybrid-ceramic ball and roller bearings are now available for environments that do not contribute to their lubrication, such as in air or vacuum. With the development of space exploration technologies and urgent demand for resources exploitation, many countries have made their plans to explore the moon in the next fe

    Evaluation of the efficacy and safety of intravenous remdesivir in adult patients with severe COVID-19: study protocol for a phase 3 randomized, double-blind, placebo-controlled, multicentre trial.

    Get PDF
    BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by a novel corinavirus (later named SARS-CoV-2 virus), was fistly reported in Wuhan, Hubei Province, China towards the end of 2019. Large-scale spread within China and internationally led the World Health Organization to declare a Public Health Emergency of International Concern on 30th January 2020. The clinical manifestations of COVID-19 virus infection include asymptomatic infection, mild upper respiratory symptoms, severe viral pneumonia with respiratory failure, and even death. There are no antivirals of proven clinical efficacy in coronavirus infections. Remdesivir (GS-5734), a nucleoside analogue, has inhibitory effects on animal and human highly pathogenic coronaviruses, including MERS-CoV and SARS-CoV, in in vitro and in vivo experiments. It is also inhibitory against the COVID-19 virus in vitro. The aim of this study is to assess the efficacy and safety of remdesivir in adult patients with severe COVID-19. METHODS: The protocol is prepared in accordance with the SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) guidelines. This is a phase 3, randomized, double-blind, placebo-controlled, multicentre trial. Adults (≥ 18 years) with laboratory-confirmed COVID-19 virus infection, severe pneumonia signs or symptoms, and radiologically confirmed severe pneumonia are randomly assigned in a 2:1 ratio to intravenously administered remdesivir or placebo for 10 days. The primary endpoint is time to clinical improvement (censored at day 28), defined as the time (in days) from randomization of study treatment (remdesivir or placebo) until a decline of two categories on a six-category ordinal scale of clinical status (1 = discharged; 6 = death) or live discharge from hospital. One interim analysis for efficacy and futility will be conducted once half of the total number of events required has been observed. DISCUSSION: This is the first randomized, placebo-controlled trial in COVID-19. Enrolment began in sites in Wuhan, Hubei Province, China on 6th February 2020. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04257656. Registered on 6 February 2020

    Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19

    Get PDF
    Rationale: Use of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) is a major concern for clinicians treating coronavirus disease 2019 (COVID-19) in patients with hypertension. Objective: To determine the association between in-hospital use of ACEI/ARB and all-cause mortality in COVID-19 patients with hypertension. Methods and Results: This retrospective, multi-center study included 1128 adult patients with hypertension diagnosed with COVID-19, including 188 taking ACEI/ARB (ACEI/ARB group; median age 64 [IQR 55-68] years; 53.2% men) and 940 without using ACEI/ARB (non-ACEI/ARB group; median age 64 [IQR 57-69]; 53.5% men), who were admitted to nine hospitals in Hubei Province, China from December 31, 2019 to February 20, 2020. Unadjusted mortality rate was lower in the ACEI/ARB group versus the non-ACEI/ARB group (3.7% vs. 9.8%; P = 0.01). In mixed-effect Cox model treating site as a random effect, after adjusting for age, gender, comorbidities, and in-hospital medications, the detected risk for all-cause mortality was lower in the ACEI/ARB group versus the non-ACEI/ARB group (adjusted HR, 0.42; 95% CI, 0.19-0.92; P =0.03). In a propensity score-matched analysis followed by adjusting imbalanced variables in mixed-effect Cox model, the results consistently demonstrated lower risk of COVID-19 mortality in patients who received ACEI/ARB versus those who did not receive ACEI/ARB (adjusted HR, 0.37; 95% CI, 0.15-0.89; P = 0.03). Further subgroup propensity score-matched analysis indicated that, compared to use of other antihypertensive drugs, ACEI/ARB was also associated with decreased mortality (adjusted HR, 0.30; 95%CI, 0.12-0.70; P = 0.01) in COVID-19 patients with hypertension. Conclusions: Among hospitalized COVID-19 patients with hypertension, inpatient use of ACEI/ARB was associated with lower risk of all-cause mortality compared with ACEI/ARB non-users. While study interpretation needs to consider the potential for residual confounders, it is unlikely that in-hospital use of ACEI/ARB was associated with an increased mortality risk

    Integrating CFD and GIS into the Development of Urban Ventilation Corridors: A Case Study in Changchun City, China

    No full text
    Given the situation of urban expansion and environmental deterioration, the government and researchers are paying considerable attention to ventilation corridors. The construction of urban ventilation corridors requires quantitative data support. Computational fluid dynamics (CFD) has advantages in the fine assessment of wind environment, and a geographic information system (GIS) has excellent performance in spatial analysis. With Changchun City used as an example, this study proposes the establishment of ventilation corridors on an urban scale to mitigate the urban-heat-island effect, and to accelerate the diffusion of air pollution. CFD simulations provided detailed spatiotemporal characteristics of wind speed and wind direction at various heights. These simulations were useful for identifying potential ventilation corridors. In general, the wind-speed and wind-direction characteristics at a height of 30 m clearly indicated potential ventilation corridors. Potential paths existed in the leading wind and south–north directions. The areas that required improvement were favorably situated in the path of potential ventilation corridors. The main roads, green spaces, and water had good connectivity. A total of five ventilation corridors were constructed, and they will directly affect the poor urban thermal environment, and enhance the mobility of air

    Insight into nickel-cobalt oxysulfide nanowires as advanced anode for sodium-ion capacitors

    Get PDF
    Transition metal oxides have a great potential in sodium-ion capacitors (SICs) due to their pronouncedly higher capacity and low cost. However, their poor conductivity and fragile structure hinder their development. Herein, core-shell-like nickel-cobalt oxysulfide (NCOS) nanowires are synthesized and demonstrated as an advanced SICs anode. The bimetallic oxysulfide with multiple cation valence can promote the sodium ion adsorption and redox reaction, massive defects enable accommodation of the volume change in the sodiation/desodiation process, meanwhile the core-shell-like structure provides abundant channels for fast transfer of sodium ions, thereby synergistically making the NCOS electrode exhibit a high reversible sodium ion storage capacity (1468.5 mAh g^-1 at 0.1 A g^-1) and an excellent cyclability (90.5% capacity retention after 1000 cycles). The in-situ X-ray diffraction analysis unravels the insertion and conversion mechanism for sodium storage in NCOS, and the enhanced capability of NCOS is further verified by the kinetic analysis and theoretical calculations. Finally, SICs consisting of the NCOS anode and a boron-nitrogen co-doped carbon nanotubes cathode deliver an energy density of 205.7 Wh kg^-1, a power density of 22.5 kW kg^-1, and an outstanding cycling lifespan. These results indicate an efficient strategy in designing a high-performance anode for sodium storage based on bimetallic dianion compounds

    Triphenylamine, Carbazole or Tetraphenylethylene-Functionalized Benzothiadiazole Derivatives: Aggregation-Induced Emission (AIE), Solvatochromic and Different Mechanoresponsive Fluorescence Characteristics

    No full text
    The development of mechanochromic fluorophors with high-brightness, solid-state fluorescence is very significant and challenging. Herein, highly solid-state emissive triphenylamine, carbazole and tetraphenylethylene-functionalized benzothiadiazole derivatives were developed. These compounds showed remarkable aggregation-induced emission and solvatochromic fluorescence characteristics. Furthermore, these fluorogenic compounds also displayed different mechanically triggering fluorescence responses

    Evaluation of LFP Battery SOC Estimation Using Auxiliary Particle Filter

    No full text
    State of charge (SOC) estimation of lithium batteries is one of the most important unresolved problems in the field of electric vehicles. Due to the changeable working environment and numerous interference sources on vehicles, it is more difficult to estimate the SOC of batteries. Particle filter is not restricted by the Gaussian distribution of process noise and observation noise, so it is more suitable for the application of SOC estimation. Three main works are completed in this paper by taken LFP (lithium iron phosphate) battery as the research object. Firstly, the first-order equivalent circuit model is adapted in order to reduce the computational complexity of the algorithm. The accuracy of the model is improved by identifying the parameters of the models under different SOC and minimum quadratic fitting of the identification results. The simulation on MATLAB/Simulink shows that the average voltage error between the model simulation and test data was less than 24.3 mV. Secondly, the standard particle filter algorithm based on SIR (sequential importance resampling) is combined with the battery model on the MATLAB platform, and the estimating formula in recursive form is deduced. The test data show that the error of the standard particle filter algorithm is less than 4% and RMSE (root mean square error) is 0.0254. Thirdly, in order to improve estimation accuracy, the auxiliary particle filter algorithm is developed by redesigning the importance density function. The comparative experimental results of the same condition show that the maximum error can be reduced to less than 3.5% and RMSE is decreased to 0.0163, which shows that the auxiliary particle filter algorithm has higher estimation accuracy

    Land Use Change and Hotspot Identification in Harbin–Changchun Urban Agglomeration in China from 1990 to 2020

    No full text
    An urban agglomeration is a growth pole of regional development. However, the land uses have changed significantly due to the impacts of intense human activities. Analyzing the overall change characteristics of land use and hotspots has direct reference value for the formulation and implementation of land use management measures. This study used a complex network of analysis methods and a cluster and outlier analysis to study the land use changes and hotspots in the Harbin–Changchun urban agglomeration (HCUA). The results showed that farmland exhibited a high weighted degree of centrality, indicating that it is the key land type in the HCUA land use change network. From 1990 to 2000, the land use change in each city mainly manifested as the loss of ecological land, whereas from 2000 to 2010 it manifested as the restoration of ecological land. From 1990 to 2020, the average path length of the network in 11 cities was less than 1.4, which was reduced in 10 cities, indicating that the stability weakened and land use change more likely occurred. Specifically, the area of ecological land reduction hotspots gradually decreased from 15,237.81 km2 to 11,533.95 km2. In the ecological land concentration area, the change hotspots for ecological land use and ecological function had strong consistency. The distribution and changes of hotspots were affected by policies and the terrain. The increase in ecological land around urban built-up areas, however, did not improve the landscape connectivity. Therefore, in the planning of ecological land use, attention should be paid to the landscape pattern

    >

    No full text
    corecore