4 research outputs found
Correlation of bandgap reduction with inversion response in (Si)GeSn/high-k/metal stacks.
The bandgap tunability of (Si)GeSn group IV semiconductors opens a new era in Si-technology. Depending on the Si/Sn contents, direct and indirect bandgaps in the range of 0.4 eV to 0.8 eV can be obtained, offering a broad spectrum of both photonic and low power electronic applications. In this work, we systematically studied capacitance-voltage characteristics of high-k/metal gate stacks formed on GeSn and SiGeSn alloys with Sn-contents ranging from 0 to 14 at.% and Si-contents from 0 to 10 at.% particularly focusing on the minority carrier inversion response. A clear correlation between the Sn-induced shrinkage of the bandgap energy and enhanced minority carrier response was confirmed using temperature and frequency dependent capacitance voltage-measurements, in good agreement with k.p theory predictions and photoluminescence measurements of the analyzed epilayers as reported earlier. The enhanced minority generation rate for higher Sn-contents can be firmly linked to the bandgap reduction in the GeSn epilayer without significant influence of substrate/interface effects. It thus offers a unique possibility to analyze intrinsic defects in (Si)GeSn epilayers. The extracted dominant defect level for minority carrier inversion lies approximately 0.4 eV above the valence band edge in the studied Sn-content range (0 to12.5 at.%). This finding is of critical importance since it shows that the presence of Sn by itself does not impair the minority carrier lifetime. Therefore, the continuous improvement of (Si)GeSn material quality should yield longer non-radiative recombination times which are required for the fabrication of efficient light detectors and to obtain room temperature lasing action
Process modules for GeSn nanoelectronics with high Sn-contents
In this paper we present a systematic study of GeSn n-FETs. First, process modules such as high-k metal gate stacks and NiGeSn-metallic contacts for use as source/drain contacts are characterized and discussed. GeSn alloys of different Sn content allow the study of the capacitance-voltage (CV) and contact characteristics of both direct and indirect bandgap semiconductors. We then present GeSn n-FET devices we have fabricated. The device characterization includes temperature dependent IV characteristics. As important step towards GeSn for tunnel-FET Ge0.87Sn0.13 tunnel-diodes with negative differential resistance at reduced temperature are shown. The present work provides a base for further optimization of GeSn FET and novel tunnel FET devices
Low Temperature Deposition of High-k/Metal Gate Stacks on High-Sn Content (Si)GeSn-Alloys
(Si)GeSn is an emerging group IV alloy system offering new exciting properties, with great potential for low power electronics due to the fundamental direct band gap and prospects as high mobility material. In this Article, we present a systematic study of HfO2/TaN high-k/metal gate stacks on (Si)GeSn ternary alloys and low temperature processes for large scale integration of Sn based alloys. Our investigations indicate that SiGeSn ternaries show enhanced thermal stability compared to GeSn binaries, allowing the use of the existing Si technology. Despite the multielemental interface and large Sn content of up to 14 atom %, the HfO2/(Si)GeSn capacitors show small frequency dispersion and stretch-out. The formed TaN/HfO2/(Si)GeSn capacitors present a low leakage current of 2 × 10(-8) A/cm(2) at -1 V and a high breakdown field of ∼8 MV/cm. For large Sn content SiGeSn/GeSn direct band gap heterostructures, process temperatures below 350 °C are required for integration. We developed an atomic vapor deposition process for TaN metal gate on HfO2 high-k dielectric and validated it by resistivity as well as temperature and frequency dependent capacitance-voltage measurements of capacitors on SiGeSn and GeSn. The densities of interface traps are deduced to be in the low 10(12) cm(-2) eV(-1) range and do not depend on the Sn-concentration. The new processes developed here are compatible with (Si)GeSn integration in large scale applications