1,543 research outputs found

    Adaptive channel selection through collaborative sensing

    Get PDF
    Proper channel selection is essential to exploit the benefits of multi-channel systems by distributing conflicting transmissions across non-interfering channels? Critical to channel selection is the channel quality metric, We propose a busy time ratio (BTR) metric that captures channel contention and user traffic load under a variety of network dynamics, We also propose a distributed collaborative sensing scheme to reduce sensing overhead and energy consumptions, The proposed algorithms can be implemented using conventional 802.11 hardware with single radio interface, The proposed metric can be integrated with routing and channel selection. Experimental results show that the proposed scheme significantly outperforms the existing channel selection methods. © 2006 IEEE.published_or_final_versio

    An efficient monitoring of eclamptic seizures in wireless sensors networks

    Get PDF
    © 2019 Elsevier Ltd This paper presents the application of wireless sensing at C-band operating at 4.8 GHz technology (a potential Chinese 5G band). A wireless transceiver is used in the indoor environment to monitor different body motions of a woman experiencing an eclamptic seizure. The body movement shows unique wireless data which carries the wireless channel information. The results indicate that using higher features increases the accuracy from 3% to 4% for classifying data from different body motions. All of the four classifiers are compared by using six performance metrics such as accuracy, recall, precession, specificity, F-measure and Kappa. The values from these metrics indicate the better performance of SVM as compared to other three classifiers, the results indicate that the eclamptic seizures are easily differentiated from other body movements by applying the aforementioned classifiers

    Solar influenced late Holocene temperature changes on the northern Tibetan Plateau

    Get PDF
    Considerable efforts have been made to extend temperature records beyond the instrumental period through proxy reconstructions, in order to further understand the mechanisms of past climate variability. Yet, the global coverage of existing temperature records is still limited, especially for some key regions like the Tibetan Plateau and for earlier times including the Medieval Warm Period (MWP). Here we present decadally-resolved, alkenone-based, temperature records from two lakes on the northern Tibetan Plateau. Characterized by marked temperature variability, our records provide evidence that temperatures during the MWP were slightly higher than the modern period in this region. Further, our temperature reconstructions, within age uncertainty, can be well correlated with solar irradiance changes, suggesting a possible link between solar forcing and natural climate variability, at least on the northern Tibetan Plateau. © 2013 The Author(s).published_or_final_versio

    Compensation defects in annealed undoped liquid encapsulated Czochralski InP

    Get PDF
    As-grown undoped n-type semiconducting and annealed undoped semi-insulating (SI) liquid encapsulated Czochralski (LEC) InP has been studied by temperature dependent Hall measurement, photoluminescence spectroscopy, infrared absorption, and photocurrent spectroscopy. P-type conduction SI InP can frequently be obtained by annealing undoped LEC InP. This is caused by a high concentration of thermally induced native acceptor defects. In some cases, it can be shown that the thermally induced n-type SI property of undoped LEC InP is caused by a midgap donor compensating for the net shallow acceptors. The midgap donor is proposed to be a phosphorus antisite related defect. Traps in annealed SI InP have been detected by photocurrent spectroscopy and have been compared with reported results. The mechanisms of defect formation are discussed. © 1999 American Institute of Physics.published_or_final_versio

    S-Band Sensing-Based Motion Assessment Framework for Cerebellar Dysfunction Patients

    Get PDF
    © 2018 IEEE. Cerebellar dysfunction (CD) is a neurological disorder that involves a number of abnormalities that affect the movement of various parts of the body such as gait abnormality or tremors in limbs such as hands or feet while reaching out for something. A user-friendly tool that can objectively evaluate the aforementioned body movements in CD patients can aid the clinicians for an objective assessment in clinical settings. The objective of this paper is to develop a method that quantifies the gait abnormality and tremors in hand using a S -band sensing technique. The S -band sensing essentially leverages small wireless devices such as network interface card, omnidirectional antenna, and router operating at 2.4 GHz to record the wireless channel data. Specifically, the aim is to use the variances of amplitude and phase information induced due to the human body movements. Each body movement leaves a unique imprint in the form of wireless channel information that is used to identify abnormalities in body motions. The proposed framework applied a linear transformation on raw phase data for calibrations since the data retrieved using the interface card contain noise and is inapplicable for motion detection. The support vector machine used to classify the data achieved high classification accuracy

    A Nacre-Like Carbon Nanotube Sheet for High Performance Li-Polysulfide Batteries with High Sulfur Loading

    Full text link
    © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Lithium-sulfur (Li-S) batteries are considered as one of the most promising energy storage systems for next-generation electric vehicles because of their high-energy density. However, the poor cyclic stability, especially at a high sulfur loading, is the major obstacles retarding their practical use. Inspired by the nacre structure of an abalone, a similar configuration consisting of layered carbon nanotube (CNT) matrix and compactly embedded sulfur is designed as the cathode for Li-S batteries, which are realized by a well-designed unidirectional freeze-drying approach. The compact and lamellar configuration with closely contacted neighboring CNT layers and the strong interaction between the highly conductive network and polysulfides have realized a high sulfur loading with significantly restrained polysulfide shuttling, resulting in a superior cyclic stability and an excellent rate performance for the produced Li-S batteries. Typically, with a sulfur loading of 5 mg cm−2, the assembled batteries demonstrate discharge capacities of 1236 mAh g−1 at 0.1 C, 498 mAh g−1 at 2 C and moreover, when the sulfur loading is further increased to 10 mg cm−2 coupling with a carbon-coated separator, a superhigh areal capacity of 11.0 mAh cm−2 is achieved

    Gastric Lavage in Acute Organophosphorus Pesticide poisoning (GLAOP) – a randomised controlled trial of multiple vs. single gastric lavage in unselected acute organophosphorus pesticide poisoning

    Get PDF
    BACKGROUND: Organophosphorus (OP) pesticide poisoning is the most common form of pesticide poisoning in many Asian countries. Guidelines in western countries for management of poisoning indicate that gastric lavage should be performed only if two criteria are met: within one hour of poison ingestion and substantial ingested amount. But the evidence on which these guidelines are based is from medicine overdoses in developed countries and may be irrelevant to OP poisoning in Asia. Chinese clinical experience suggests that OP remains in the stomach for several hours or even days after ingestion. Thus, there may be reasons for doing single or multiple gastric lavages for OP poisoning. There have been no randomised controlled trials (RCTs) to assess this practice of multiple lavages. Since it is currently standard therapy in China, we cannot perform a RCT of no lavage vs. a single lavage vs. multiple lavages. We will compare a single gastric lavage with three gastric lavages as the first stage to assess the role of gastric lavage in OP poisoning. METHODS/DESIGN: We have designed an RCT assessing the effectiveness of multiple gastric lavages in adult OP self-poisoning patients admitted to three Chinese hospitals within 12 hrs of ingestion. Patients will be randomised to standard treatment plus either a single gastric lavage on admission or three gastric lavages at four hour intervals. The primary outcome is in-hospital mortality. Analysis will be on an intention-to-treat basis. On the basis of the historical incidence of OP at the study sites, we expect to enroll 908 patients over three years. This projected sample size provides sufficient power to evaluate the death rate; and a variety of other exposure and outcome variables, including particular OPs and ingestion time. Changes of OP level will be analyzed in order to provide some toxic kinetic data. DISCUSSION: the GLAOP study is a novel, prospective cohort study that will explore to the toxic kinetics of OP and effects of gastric lavage on it. Given the poor information about the impact of gastric lavage on clinical outcomes for OP patients, this study can provide important information to inform clinical practice

    Functionalized Mesoporous SBA-15 with CeF3: Eu3+ Nanoparticle by Three Different Methods: Synthesis, Characterization, and Photoluminescence

    Get PDF
    Luminescence functionalization of the ordered mesoporous SBA-15 silica is realized by depositing a CeF3: Eu3+ phosphor layer on its surface (denoted as CeF3: Eu3+/SBA-15/IS, CeF3: Eu3+/SBA-15/SI and CeF3: Eu3+/SBA-15/SS) using three different methods, which are reaction in situ (I-S), solution impregnation (S-I) and solid phase grinding synthesis (S-S), respectively. The structure, morphology, porosity, and optical properties of the materials are well characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, N2 adsorption, and photoluminescence spectra. These materials all have high surface area, uniformity in the mesostructure and crystallinity. As expected, the pore volume, surface area, and pore size of SBA-15 decrease in sequence after deposition of the CeF3: Eu3+ nanophosphors. Furthermore, the efficient energy transfer in mesoporous material mainly occurs between the Ce3+ and the central Eu3+ ion. They show the characteristic emission of Ce3+ 5d → 4f (200–320 nm) and Eu3+5D0 → 7FJ(J = 1–4, with 5D0 → 7F1 orange emission at 588 nm as the strongest one) transitions, respectively. In addition, for comparison, the mesoporous material CeF3: Eu3+/SBA-15/SS exhibits the characteristic emission of Eu3+ ion under UV irradiation with higher luminescence intensity than the other materials
    • …
    corecore