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Abstract- Proper channel selection is essential to exploit the
benefits of multi-channel systems by distributing conflicting
transmissions across non-interfering channels. Critical to channel
selection is the channel quality metric. We propose a busy time
ratio (BI'R) metric that captures channel contention and user
traffic load under a variety of network dynamics. We also propose
a distributed collaborative sensing scheme to reduce sensing
overhead and energy consumptions. The proposed algorithms
can be implemented using conventional 802.11 hardware with
single radio interface. The proposed metric can be integrated
with routing and channel selection. Experimental results show
that the proposed scheme significantly outperforms the existing
channel selection methods.

Index Terms- Multiple channel, channel selection, available
bandwidth, busy time ratio

I. INTRODUCTION
A critical problem in multi-hop wireless networks is

throughput degradation due to interference among multiple
simultaneous transmissions. Multi-channel systems were intro-
duced to alleviate interference by distributing interfering links
to non-interfering channels. For dense, heavily loaded systems,
the number of potentially conflicting links outnumbers the
number of channels, and a good channel selection algorithm is
essential to system performance. The problem is exacerbated
by the sporadic nature of multi-hop wireless networks, in
particular node mobility, fragile links, traffic dynamics.

Critical to a channel selection scheme is the metric to
characterize channel quality. Prior efforts have proposed to
use link signal-to-noise ratio [1], or probed packet delay [2]
as channel metrics. While providing a good estimation of
channel quality for point to point links, these metrics do
not accurately characterize channel contentions. The work in
[3], [4], [5] approximates contention through the number of
competing links or traffic volume, ignoring the impact of
heterogenous traffic pattern and heterogeneous link quality
across links. These motivate the search for a channel metric
that can properly characterize channel utilization under a
variety of traffic and topology dynamics and time-varying
channel impairments.
The metric design is also constrained by the complexity

and overhead of measurement techniques. We consider a
distributed multi-hop wireless network without central man-
agement We assume commonly available 802 11 devices each
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equipped with a half-duplex single radio interface. For this
type of network, we propose a device-centric channel selection
approach where each device senses channel conditions and
adapts its channel usage to network and traffic dynamics. In
particular, we propose a simple, busy time ratio (BTR) based
channel metric, and a set of collaborative sensing techniques
that trade off complexity with accuracy. The proposed ap-
proach allows each user to collect information on the quality
of multiple channels without exhaustively accessing all the
channels, making channel sensing energy-efficient. We also
incorporate the BTR metric into routing and channel selec-
tion for throughput improvement in multi-hop transmissions.
Extensive experimental results demonstrate the effectiveness
of the proposed metric and sensing techniques.
The rest of the paper is organized as follows. In Sec. II,

we briefly introduce related work in channel quality nea-
surements. In Sec. III, we present the BTR-based channel
metric and propose several collaborative sensing techniques
to estimate BTR in IEEE 802. I1 DCF systems. In Sec. V,
we propose a BTR-based adaptive channel and route selection
framework. The advantages of the proposed metric and frame-
work are demonstrated by experimental results in Sec. VI.
Finally, we conclude in Sec. VII.

II. RELATED WORK

In this section, we briefly overview existing channel evalu-
ation methods and outline the research problem.
The simplest approach is to ignore channel quality and

randomly select channels [6]. Under contention fluctuations
and time-varying channel impairments, this approach is obvi-
ously not optimal. The work in [2] applies channel probing,
i.e., sending probing packets over the air to estimate channel
bandwidth and delay. This approach may heavily stress the
communication resources of bandwidth- or energy-constrained
devices. In addition, injecting extra traffic could result in
excessive contention and obligatory backoff, which lead to
system throughput degradation.
On the other hand on line signal based channel estimation

provides an inexpensive alternative to channel probing. The
work in [1] measures signal to interference plus noise ratio
(SINR), indirectly estimating the maximum throughput a user
can get without any contention. However, it fails to account
for the impact of user contention. The work in [3], [4]
use the number of competing links N to characterize the
level of contention. However, the estimation is subject to the
assumption of homogeneous traffic which is not commonly
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observed. Other studies have shown that estimation of N
suffers from non-negligible estimation errors [7], [8], and a
high computational complexity [3].

The work in [5] uses the aggregated traffic served by a chan-
nel to represent its quality. However, it does not consider the
impact of user-dependent channel impairments, and channel
usage due to packet retransmissions. In addition, this approach
assumes each user can successfully collect traffic information
from neighbors in close proximity, making the measurement
sensitive to the reliability of message exchanging, and the level
of user cooperation.

III. Busy TIME RATIO AS CHANNEL SELECTION METRIC

Let available bandwidth Baa/il represent the maximum
bandwidth a channel can provide to a new link. Intuitively,
a user tends to select the channel with the highest B0 jail
We can approximate B0 V il as the difference between the
maximum saturated bandwidth of the channel and the to-
tal bandwidth occupied by existing links. Assuming each
device performs CSMA/CA [9], we can derive Baaail by
estimating mean frame size (AlIFS) and eavesdropping on the
network allocation vector (NAV) [10]. However, the NAV
information collected by a device only accounts for the link
transmissions within a device s transmission range. Instead,
channel quality depends on the level of transmissions within
a node s interference range. In general the interference range
is much larger than the transmission range, e.g. by a factor of
2. Hence, NAV-based available bandwidth under-estimates
channel usage.
We propose to replace NAV with busy time ratio (BTR).

BTR is defined as the total time that the physical channel is
busy normalized by the measurement time,

BTR
Total busy time

Total measurement time (1)

Following a set of derivations similar to [10], we can derive
Bav/il from BTR and AIFS by solving a set of nonlinear
equations. To verify the accuracy of the proposed approach, we
perform a set of experiments comparing the analytical results
to the actual measurements. We randomly set up a set of links
in a given area, each carrying random traffic with the same
packet size but different packet rate. We analytically compute
B,,,a,il based on the measured BTR at each niode. Ini Fig. 1,
this derivation is compared to the actual throughput each link
obtains. We see that the estimation is fairly accurate under
fixed frame size AIFS. There exists a consistent linear relation
between Bavail and BTR for a fixed MFS.

While algorithms exist to estimate Ba ail from the observed
AMRS and BTR, they are computationally complex [10] and
may heavily stress the energy constrained devices Motivated
by the consistent linear trend in Fig 1, we propose to directly
use BTR as the channel metric. The same figure also suggests
that \AIFS can heavily impact the available bandwidth for
a given BTR. However, good estimation of -NIFS requires
excessive sensing and reliable decoding of all packets, which
is infeasible for energy-constrained devices. As a result, we
ignore the impact of V FS, trading complexity with accuracy.
We examine the related estimation error in Sec. VI-B, which
confirms that the imipact is small in the simulatekd networks.

3.6 ll3

Simulated, size = 64 bytes
3.2 - - Analytical, size = 64 bytes

\ 1-Simulated, size = 256 bytes
Q2.8 Analytical, size = 256 bytes
Q0 -v- Simulated, size = 1024 bytes;!~2.4 -v- Analytical, size = 1024 bytes

*§2.0
1 .6

(D
1 .2

>0.8-

0.4

o
0.2 0.4

BTR
0.6 0.8

Fig. 1. Comparison of Bavail estimated on MIFS and BTR with that
obtained from simulations. MFS = 64, 256, 1024 bytes respectively.

While the proposed BTR metric focuses on characterizing
user contentions, it also captures variations in user link quality.
A user experiencing bad connections consumes additional time
by using lower rates and extra retransmissions. In this work,
we assume that each user experiences statistically uniform
impairments (path loss, shadowing and fading) across all the
channels; i.e. the impairments are frequency non-selective.
Therefore, BTR directly indicates the channel usage and
the available bandwidth for each new link. For time-varying
frequency-selective fading, we can extend BTR to account for
average channel signal-to-noise ratio by periodically probing
each channel. Overall, BTR provides a good approximation
of channel quality, taking into account the impact of user
contentions, traffic heterogeneity, transmission failures and
retransmissions.

IV. COLLABORATIVE BTR MEASUREMENT
In this section, we provide a measurement scheme that

allows each user to observe BTRs of multiple channels with-
out having to sense each channel individually. In particular,
each device performs local measurement on the channel it is
currently using, and utilizes a collaborative sensing scheme to
accumulate measurements on other channels.

A. Local BTR Sensing
Each device measures the BTR of the channel it is cur-

rently using. There are two measuring schemes that trade off
complexity with precision.
a) Physical measurement
This scheme invokes the carrier-sensing module to measure
the power level of the received signal When the power level
exceeds a pre defined threshold the channel is busy Given
the carrier-sensing module is built-in, this scheme is simple to
implement However since sensing consumes similar power
as transmissions, this leads to excessive energy consumption.
We refer to the physically measured BTR as BTRPHY
b) Vrtual measurement
To reduce energy consumption due to carrier sensing, each
node can estimate BTR by eavesdropping on MAC control
messages. In particular, AV information ermbedded in MAC
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frame headers approximates the duration of the current trans-
mission. Each device can obtain a good estimation of BTR
by accumulating self-transmission time, and NAV-specified
neighboring links' transmission time as well as protocol-
specific overhead. This measurement significantly improves
energy efficiency - during the time declared by neighbor's
NAV signals, a device can configure its radio to a low-
power dozing mode [11]. We refer to the measured BTR as
BTRAIAC

Fig. 2 illustrates the time-line of both measurement
schemes. The busy/idle states represent physical sensing
results of Node I using physical measurement. The NAV-
related blocks represent the channel busy durations estimated
at Nodes 1-6 by using virtual sensing. It should be noted that
virtual measurement requires successful decoding of NAV
signals, and can therefore only detect transmissions within
its transmission range, rather than interference range. This
leads to under-estimation of channel usage. Next we propose
a collaboration-based approach to overcome this problem.

B. Collaborative Sensing
While virtual sensing scheme provides an energy-efficient

alternative to physical sensing, its estimation accuracy is
limited by the difference between the interference range and
the transmission range. In addition, the sensing complexity
and overhead scales linearly with the number of channels. In
this section, we propose a collaborative sensing scheme where
devices can obtain an accurate estimation of BTR of multiple
channels without physically scanning and carrier-sensing all of
them. The scheme is motivated by the fact that users in close
proximity observe similar channel usage.

The detailed procedure is as follows. Each device conducts
virtual sensing on its current channel i in use, to obtain a self-
observed BTRSIAC(i). Each device periodically broadcasts
this measurement to its k-hop neighbors, where

k Interference Range
-Transmitssion Range-

The BTR broadcast can be embedded into regular control
messages, communicated through a predefined coordination
channel, or during a synchronized coordination time slot [4],
[14]. Each device collects the BTR broadcasts and records
them in BTRIAC(.) for each channel. Utilizing self and
neighbor BTR measurements, each device updates its BTR
estimation as follows:
a) For its current channel i in use,

BTR(i) max(BTRSAC (t) max(BTR IAC(i))) (2)
b) For other channels j ( i)

BTR(j) max(BTRN ) (3)j mx AfAC A))
The proposed collaborative sensing provides a fair level

of robustness against loss of BTR broadcast packets. Prior
work [5] estimates the traffic volume on each channel by
accumulating the traffic information from each individual user.
Any packet loss will lead to inaccurate estimation. For the
proposed approach, BTR is a local measure, and thus the
contents of the BTR broadcast each device receives is high
correlated. The BTR estimation suffers only if the broadcast

message from the user observing the highest BTR is lost.
Such redundancy provides robustness to packet loss. We will
examine this property through experimental results in Sec. VI-
D.

V. BTR-BASED CHANNEL AND ROUTING ASSIGNMENT
In this section, we incorporate BTR-based channel metric

into channel and route selection for multi-channel ad hoc
networks. We start from single hop transmissions where link
pairs use BTR to negotiate a data channel. We then show
that for multi-hop transmissions, BTR can be integrated into
routing decisions to discover the best route and coordinate
channel usage along the route. For simplicity, we assume that
the MAC protocol provides a control channel or time frame
for users to exchange negotiation information.

A. Adaptive Channel Selection for Single-hop Transmission
In fully connected networks, any two nodes observe the

same channel status, and thus the same BTR. Hence, one node
can decide the best channel to use based on self-observations.
For multi-hop networks, two ends of the transmission may
observe different BTR on each channel, and need to negotiate
the data channel selection. We propose to combine the BTR
of a link pair (node u and v) as follows:

BTR(n) = max{BTRu (n), BTR, (T)} (4)
where nu is the chaninel index. Theni the channel selection
is reduced to finding the channel with the lowest combined
BTR, i.e.,

n = argmMir BTR(n). (5)
Before a pair of users u and v start communications, both

perform collaborative sensing to collect BTRs, and select
the best channel according to (5). During transmissions, they
continue to collect BTRs and adapt their channel selection to
network dynamics. The decision of channel switching needs
to account for not only the BTRs on other channels, but
also the impact of traffic variations by moving self-traffic
to the new channel. Additional mechanisms are required to
avoid concurrent switching where a few node pairs (in close
proximity) observe a channel with low BTR and switch to
it concurrently. We propose a random delay based approach
where a node pair defers its channel switch by a random time
interval. During this period, they keep sensing the channel
and if a substantial increase in BTR is detected, the switch
is canceled.

Fig. 3 illustrates an example network with two channels. A
line exists between two nodes if they are within transmission
range of each other. For illustration, we only show the five
nodes in the middle of the network. The left table shows
the BTRs of both channels observed by each node (through
collaborative virtual sensing). When Node 1 and Node 2 want
to start a transmission, they select channel 2 following (5).

B. Route and Channel Selection in Multi-hop Networks
The proposed BTR metric can be integrated with route

selection for multi-hop transmissions. We use a simple routing
and channel usage strategy to illustrate the usage of BTR. We
assume that the nodes on each route use the same channel to
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Fig. 2. BTR measurement in IEEE 802.11 DCF.

Channel selection for transmission 1-2

Selection metric CH1 CH2 Decision
BTRmx 0.2 0.3 CH1
BTRT, 0.5 0.4 CH2

max(BTRTX, BTRRx) 0.5 0.4 CH2
The channel with max(BTRTX, BTYRx) is the

selection. So CH2 is selected

5

Path and channel selection for transmission 1-5

Path1: 1-2-5 Path2: 1-3-5
3W Hop CH1 CH2 Hop CH1 CH2

1-2 0.5 0.4 1-3 0.5 0.7
2-5 0.6 0.4 3-5 0.5 0.7

1 2-5 0.6 0.4 1-3--5 0.5 0.7

The hop with the max (BTRTx, BTRRx) is thebottleneck. So pathl with CH2 is preferred
4

Fig. 3. An example of BTR-based channel and route selection.

TABLE I
MAIN SYSTEM PARAMETERS.

Description alue
Basic rate 2 AVlbps
Data rate I1 VIbps
Slot time 20 us
SIFS 10 us
DIFS 50 us

PHY header 144 bits + 48 bits
MAC header 224 bits

RTS 160 bits + PHY header
CTS 112 bits + PHY header
ACK 112 bits + PHY header
DATA Data length + MAC header + PHY header

Carrier sensing range 500 m
Transmitting range 250 m
CBR packet length Uniformly distributed in [32, 1024] bytes
CBR packet rate Uniformly distributed in [1, 50] packets/sec

Active link number n Uniformly distributed in 30

avoid frequent channel switches. Using the example in Fig. 3,
we illustrate the procedures to select the routing path and the
channel to use on each hop for a transmission from Node 1

to Node 5. In this case, there are two candidate routing paths.
Each path selects the channel that minimizes the path BTR,
defined as the maximum BTR of all the hops on the path.
The bottom right table in the same figure illustrates the BTR
of different hops. In this case, path 2 5 with channel

2 has the minimum path BTR, and thus is selected as the
route.

VI. PERFORMANCE EVALUATION
In this section, we conduct experimental simulations to

evaluate the performance of the proposed channel selection
schemes. We start from a fully connected network and com-

pare the performance of different channel metrics. We then

consider general multi-hop networks, and examine the effec-
tiveness of the collaborative virtual sensing, and the robustness
of different metrics to broadcast errors. Finally, we compare
the performance of different metrics in multi-hop networks.

uted MAC (HD-MAC) [14]. In HD-MAC, the transmissions
are based on time-frame, which is composed of a short-period
coordination time slot and a long-period data transmission
time slot. In the coordination time slot, users switch to a pre-
defined coordination channel to exchange BTR information
and negotiate the data channel to be used in the following data
transmission time slot. Then in the data transmission time slot,
users switch to the selected data channel for data transmission.
Related main MAC layer parameters and the traffic parameters
used in the simulation are summarized in Table I.

We examine the performance of different channel metrics,

including the number of co,ntending links N, aggregated
throughput E Thru, BTR and the estimated available band-
width B0 VOil. All nodes have the same transmission range of

250 m and interference range of 500 m. For simplicity we

assume that each user experiences the same average signal to

noise ratio on each channel.

We use the decsion correctness to measure the accuracy"
of the channel metrics. Decision correctness is defined as

A. Simulaon Setup

We extend NS-2 [12] with CMU wireless extensions [13] to
include a multi-channel MAC protocol, heterogeneous distrib-

dccisiorn correctness
Number of correct selections
Total nUTber of selectionts

A channel selection decision is "correct" if it leads to a larger
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overall system throughput than any other selection.

B. Comparison of Channel Selection Metrics
We start from a fully connected network where users

observe the same contention on each channel. We randomly
deploy users with traffic in a lOOTrm x lOOTrm area. In each
instance, a pair of nodes start communications and negotiate a
channel to use, while a random number of CBR flows with ran-
dom traffic exist on all the channels. The characteristics of the
CBR flows are also listed in Table I. Table II summarizes the
results using different metrics, averaged over 3000 instances,
and assuming two channels in the system. For comparison,
the decision correctness, the system throughput and the link
throughput of the newly joined link are listed in Table II.
We also include a normalized throughput measure (using
the contending link number-based metric as the baseline) to
illustrate the relative difference of different metrics.
The results show that the Bavao -based channel selection

yields the best performance, especially for the new link (67%
improvement compared to N-based scheme). BTR-based
metric leads to a slightly lower throughput (10% degradation)
but outperforms the other two metrics, especially metric N.
Performance degradation of the metric EThru is due to
ignoring of channel resource consumption from user con-
tention and packet retransmissions. The decision errors of
metric BTR are mainly due to ignoring NIFS. The results
indicates that ignoring the effects of MFS leads to moderate
performance degradation. Overall, we see that BTR provides
an accurate but low cost channel quality ranker. Note that even
for B, ail decision errors exist. This is mainly due to errors
in MIFS estimation, and to neglecting MIFS variations due
to the newly joined traffics.

C. Effectiveness of Collaborative BTR Virtual Sensing
The proposed collaborative virtual sensing requires informa-

tion from k-hop neighbors to estimate BTR. In this section,
we examine the effectiveness of collaborative virtual sensing
when neighbors up to 2 hops away are involved. We randomly
deploy 10 node pairs in a 500rrn x 500Tn area, each carrying
a UDP flow with CBR traffic of 512 byteslpacket and
30 packets sec. The results are averaged over 3000 indepen-
dent deployments. Fig. 4 compares the self-observed physical
BTR BTRPHY, self-observed virtual BTR BTRA AC, and
the BTR estimated based on 2 hop collaborative virtual sens-
ing. From the figure, we find that the self-observed BTRA AC
is in general lower than the self-observed BTRpHy, due
to the difference in transmission and interference ranges. In
addition, collaborative virtual sensing leads to a good estimiate
of the BTIRPHY-

D Robustness to Broadcast Errors
Results in the previous section show that when broadcast is

error-free, E Thru metric performs only slightly worse than
BTR metric. Next, we examine the robustness of the two
metrics against broadcasting errors in multi-hop environments.
Broadcast message transmission is conducted between any
two nodes within transmission range. Broadcasting error rate
2BER) is used to indicat the error level. It is defined as the

0 0.5 1
20 BTR

200 Max (2hop BTRMAC)

100

0
0 0.5 1

BTR

0.9

08

0.7-

0.6

.05 .

0.4-

0.3

0.2-
Self BTRPHY

0.1 - Self BTRMAC
Max (2hop BTRMAC)

0
0 0.5

BTR

Fig. 4. Approximation of BTRPHY with 2-hop neighbors' BTRMAC.
Sub-figures on the left from top to botton are the histograms of self-
observed BTRPHY, self-observed BTRVIAC and max(2hop BTRIAC)
respectively; the sub-figure on the right plots the corresponding CDFs.
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Fig. 5. Decision correctness of BTR and E Thru based schemes under
different broadcast error rates.

ratio of the number of failed broadcast message transmissions
and the total number of broadcasting messages. For example,
a broadcast message sent by one node to its 10 neighbors
is counted as 10 broadcast messages, and if 3 of the 10
transmissions fail, then the BER is 0.3.
We randomly deploy users in a 500m x 500m area, and

measure the decision correctness under different BER. Re-
sults in Fig. 5 show that the decision correctness degrades
with BER, but BTR- based metric offers higher robustness.
This is due to the correlation in neighboring users' BTR mea-
surements - since BTR measurements taking into account the
contributions of contending users in the neighborhood, users
in close proximity are likely to report similar BTR on each
channel. Such correlations can be utilized by collaborative
sensing to mitigate the effect of broadcast errors. In contrast,
correct estimation of Thru requires reliable reception of
broadcasts from neighbors.

It should be noted that users can also measure BTR
by physically observing each of the channels sequentially.
This eliminates the dependency on message exchanging and
neighbor cooperation, at the costs of a higher device power
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TABLE II
PERFORMANCE COMPARISON OF DI1FFERENT CHANNEI METRICS.

Absolute Thru.
of New Link
402 Kbps
568 Kbps
611 Kbps
671 Kbps

Normalized Thru.
of New Link

100.0%
141.3%
152.0%
166.9%

measure BTR across multiple channels with minimum cost
and robustness to packet losses. Experimental results show
that the proposed scheme achieves significant performance
improvements. The proposed algorithms can be implemented
using conventional 802.11 hardware with single half-duplex
radio interface.
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