7,252 research outputs found

    Rice protein radicals: growth and stability under microwave treatment

    Get PDF
    published_or_final_versio

    Interference in transport through double barriers in interacting quantum wires

    Full text link
    We investigate interference effects of the backscattering current through a double-barrier structure in an interacting quantum wire attached to noninteracting leads. Depending on the interaction strength and the location of the barriers, the backscattering current exhibits different oscillation and scaling characteristics with the applied voltage in the strong and weak interaction cases. However, in both cases, the oscillation behaviors of the backscattering current are mainly determined by the quantum mechanical interference due to the existence of the double barriers.Comment: 6 pages, 3 fig

    Structure and far-infrared edge modes of quantum antidots at zero magnetic field

    Get PDF
    We have investigated edge modes of different multipolarity sustained by quantum antidots at zero magnetic field. The ground state of the antidot is described within a local density functional formalism. Two sum rules, which are exact within this formalism, have been derived and used to evaluate the energy of edge collective modes as a function of the surface density and the size of the antidot.Comment: Typeset using Revtex, 8 pages and 6 Postscript figure

    Magnetoplasmons in quantum rings

    Get PDF
    We have studied the structure and dipole charge density response of nanorings as a function of the magnetic field using local-spin density functional theory. Two small rings consisting of 12 and 22 electrons confined by a positively charged background are used to represent the cases of a narrow and a wide ring. The results are qualitatively compared with experimental data existing on microrings and on antidots. A smaller ring containing 5 electrons is also analyzed to allow for a closer comparison with a recent experiment on a two electron quantum ring.Comment: Typeset using Revtex, 13 pages and 11 Postscript figure

    Premartensitic transition driven by magnetoelastic interaction in bcc ferromagnetic Ni2MnGaNi_{2}MnGa

    Get PDF
    We show that the magnetoelastic coupling between the magnetization and the amplitude of a short wavelength phonon enables the existence of a first order premartensitic transition from a bcc to a micromodulated phase in Ni2MnGaNi_{2}MnGa. Such a magnetoelastic coupling has been experimentally evidenced by AC susceptibility and ultrasonic measurements under applied magnetic field. A latent heat around 9 J/mol has been measured using a highly sensitive calorimeter. This value is in very good agreement with the value predicted by a proposed model.Comment: 4 pages RevTex, 3 Postscript figures, to be published in Physical Review Letter

    Synthetic Lethality of Chk1 Inhibition Combined with p53 and/or p21 Loss During a DNA Damage Response in Normal and Tumor Cells

    Get PDF
    Cell cycle checkpoints ensure genome integrity and are frequently compromised in human cancers. A therapeutic strategy being explored takes advantage of checkpoint defects in p53-deficient tumors in order to sensitize them to DNA-damaging agents by eliminating Chk1-mediated checkpoint responses. Using mouse models, we demonstrated that p21 is a key determinant of how cells respond to the combination of DNA damage and Chk1 inhibition (combination therapy) in normal cells as well as in tumors. Loss of p21 sensitized normal cells to the combination therapy much more than did p53 loss and the enhanced lethality was partially blocked by CDK inhibition. In addition, basal pools of p21 (p53 independent) provided p53 null cells with protection from the combination therapy. Our results uncover a novel p53-independent function for p21 in protecting cells from the lethal effects of DNA damage followed by Chk1 inhibition. As p21 levels are low in a significant fraction of colorectal tumors, they are predicted to be particularly sensitive to the combination therapy. Results reported in this study support this prediction

    The Search for Higher TcT_c in Houston

    Full text link
    It is a great pleasure to be invited to join the chorus on this auspicious occasion to celebrate Professor K. Alex Mueller's 90th birthday by Professors Annette Bussman-Holder, Hugo Keller, and Antonio Bianconi. As a student in high temperature superconductivity, I am forever grateful to Professor Alex Mueller and Dr. Georg Bednorz "for their important breakthrough in the discovery of superconductivity in the ceramic materials" in 1986 as described in the citation of their 1987 Nobel Prize in Physics. It is this breakthrough discovery that has ushered in the explosion of research activities in high temperature superconductivity (HTS) and has provided immense excitement in HTS science and technology in the ensuing decades till now. Alex has not been resting on his laurels and has continued to search for the origin of the unusual high temperature superconductivity in cuprates.Comment: Dedicated to Alex Mueller, whose "important breakthrough in the discovery of superconductivity in ceramic materials" in 1986 has changed the world of superconductivit

    Electronic Origin of High Temperature Superconductivity in Single-Layer FeSe Superconductor

    Full text link
    The latest discovery of high temperature superconductivity signature in single-layer FeSe is significant because it is possible to break the superconducting critical temperature ceiling (maximum Tc~55 K) that has been stagnant since the discovery of Fe-based superconductivity in 2008. It also blows the superconductivity community by surprise because such a high Tc is unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at ambient pressure which can be enhanced to 38 K under high pressure. The Tc is still unusually high even considering the newly-discovered intercalated FeSe system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient pressure and possible Tc near 48 K under high pressure. Particularly interesting is that such a high temperature superconductivity occurs in a single-layer FeSe system that is considered as a key building block of the Fe-based superconductors. Understanding the origin of high temperature superconductivity in such a strictly two-dimensional FeSe system is crucial to understanding the superconductivity mechanism in Fe-based superconductors in particular, and providing key insights on how to achieve high temperature superconductivity in general. Here we report distinct electronic structure associated with the single-layer FeSe superconductor. Its Fermi surface topology is different from other Fe-based superconductors; it consists only of electron pockets near the zone corner without indication of any Fermi surface around the zone center. Our observation of large and nearly isotropic superconducting gap in this strictly two-dimensional system rules out existence of node in the superconducting gap. These results have provided an unambiguous case that such a unique electronic structure is favorable for realizing high temperature superconductivity
    corecore