119,867 research outputs found

    Simulating emergent urban form: desakota in China

    Get PDF
    We propose that the emergent phenomenon know as ?desakota?, the rapidurbanization of densely populated rural populations in the newlydeveloped world, particularly China, can be simulated using agent-basedmodels which combine both local and global features. We argue thatdeskota represents a surprising and unusual form of urbanization wellmatchedto processes of land development that are driven from the bottomup but moderated by the higher-level macro economy. We develop asimple logic which links local household reform to global urban reform,translating these ideas into a model structure which reflects these twoscales. Our model first determines the rate of growth of different spatialaggregates using linear statistical analysis. It then allocates this growth tothe local level using developer agents who determine the transformation ormutation of rural households to urban pursuits based on local land costs,accessibilities, and growth management practices. The model is applied todesakota development in the Suzhou region between 1990 and 2000. Weshow how the global rates of change predicted at the township level in theWuxian City region surrounding Suzhou are tempered by localtransformations of rural to urban land uses which we predict using cellularautomata rules. The model, which is implemented in the RePast 3software, is validated using a blend of data taken from remote sensing andgovernment statistical sources. It represents an example of generativesocial science that fuses plausible behavior with formalized logics matchedagainst empirical evidence, essential in showing how novel patterns ofurbanization such as desakota emerge

    Energy Centroids of Spin II States by Random Two-body Interactions

    Full text link
    In this paper we study the behavior of energy centroids (denoted as EIˉ\bar{E_I}) of spin II states in the presence of random two-body interactions, for systems ranging from very simple systems (e.g. single-jj shell for very small jj) to very complicated systems (e.g., many-jj shells with different parities and with isospin degree of freedom). Regularities of EIˉ\bar{E_I}'s discussed in terms of the so-called geometric chaoticity (or quasi-randomness of two-body coefficients of fractional parentage) in earlier works are found to hold even for very simple systems in which one cannot assume the geometric chaoticity. It is shown that the inclusion of isospin and parity does not "break" the regularities of EIˉ\bar{E_I}'s.Comment: four figures. to appear in Physical Review

    Correction function in the Lidar equation and the solution techniques for CO2 Lidar date reduction

    Get PDF
    For lidar systems with long laser pulses the unusual behavior of the near-range signals causes serious difficulties and large errors in reduction. The commonly used lidar equation is no longer applicable since the convolution of the laser pulse with the atmospheric parameter distributions should be taken into account. It is important to give more insight into this problem and find the solution techniques. Starting from the original equation, a general form is suggested for the single scattering lidar equation where a correction function Cr is introduced. The correction Function Cr(R) derived from the original equation indicates the departure from the normal lidar equation. Examples of Cr(R) for a coaxial CO2 lidar system are presented. The Differential Absorption Lidar (DIAL) errors caused by the differences of Cr(R) for H2O measurements are plotted against height

    Representation theory of the stabilizer subgroup of the point at infinity in Diff(S^1)

    Get PDF
    The group Diff(S^1) of the orientation preserving diffeomorphisms of the circle S^1 plays an important role in conformal field theory. We consider a subgroup B_0 of Diff(S^1) whose elements stabilize "the point of infinity". This subgroup is of interest for the actual physical theory living on the punctured circle, or the real line. We investigate the unique central extension K of the Lie algebra of that group. We determine the first and second cohomologies, its ideal structure and the automorphism group. We define a generalization of Verma modules and determine when these representations are irreducible. Its endomorphism semigroup is investigated and some unitary representations of the group which do not extend to Diff(S^1) are constructed.Comment: 34 pages, no figur

    Time-resolved X-ray microscopy of nanoparticle aggregates under oscillatory shear

    Full text link
    Of all current detection techniques with nanometer resolution, only X-ray microscopy allows imaging nanoparticles in suspension. Can it also be used to investigate structural dynamics? When studying response to mechanical stimuli, the challenge lies in applying them with precision comparable to spatial resolution. In the first shear experiments performed in an X-ray microscope, we accomplished this by inserting a piezo actuator driven shear cell into the focal plane of a scanning transmission X-ray microscope (STXM). Thus shear-induced reorganization of magnetite nanoparticle aggregates could be demonstrated in suspension. As X-ray microscopy proves suitable for studying structural change, new prospects open up in physics at small length scales.Comment: submitted to J. Synchrot. Radia

    Oxygen-isotope effect on the in-plane penetration depth in underdoped Y_{1-x}Pr_xBa_2Cu_3O_{7-delta} as revealed by muon-spin rotation

    Full text link
    The oxygen-isotope (^16O/^18O) effect (OIE) on the in-plane penetration depth λab(0)\lambda_{ab} (0) in underdoped Y_{1-x}Pr_xBa_2Cu_3O_{7-delta} was studied by muon-spin rotation. A pronounced OIE on λab−2(0)\lambda_{ab}^{-2}(0) was observed with a relative isotope shift of Δλab−2/λab−2\Delta\lambda^{-2}_{ab}/\lambda^{-2}_{ab}=-5(2)% for x =0.3 and -9(2)% for x=0.4. It arises mainly from the oxygen-mass dependence of the in-plane effective mass mab∗m_{ab}^{\ast}. The OIE exponents of T_{c} and of λab−2(0)\lambda_{ab}^{-2}(0) exhibit a relation that appears to be generic for cuprate superconductors.Comment: 4 pages, 4 eps figures, RevTex

    Roles of axial anomaly on neutral quark matter with color superconducting phase

    Full text link
    We investigate effects of the axial anomaly term with a chiral-diquark coupling on the phase diagram within a two-plus-one-flavor Nambu-Jona-Lasinio (NJL) model under the charge-neutrality and β\beta-equilibrium constraints. We find that when such constraints are imposed, the new anomaly term plays a quite similar role as the vector interaction does on the phase diagram, which the present authors clarified in a previous work. Thus, there appear several types of phase structures with multiple critical points at low temperature TT, although the phase diagrams with intermediate-TT critical point(s) are never realized without these constraints even within the same model Lagrangian. This drastic change is attributed to an enhanced interplay between the chiral and diquark condensates due to the anomaly term at finite temperature; the u-d diquark coupling is strengthened by the relatively large chiral condensate of the strange quark through the anomaly term, which in turn definitely leads to the abnormal behavior of the diquark condensate at finite TT, inherent to the asymmetric quark matter. We note that the critical point from which the crossover region extends to zero temperature appears only when the strength of the vector interaction is larger than a critical value. We also show that the chromomagnetic instability of the neutral asymmetric homogenous two-flavor color superconducting(2CSC) phase is suppressed and can be even completely cured by the enhanced diquark coupling due to the anomaly term and/or by the vector interaction.Comment: 15 pages, 5 figures, typos corrected, new references and some statements adde
    • …
    corecore