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Abstract

The group Diff(S1) of the orientation preserving diffeomorphisms of the circle S1

plays an important role in conformal field theory. We consider a subgroup B0 of Diff(S1)
whose elements stabilize “the point at infinity”. This subgroup is of interest for the
actual physical theory living on the punctured circle, or the real line.

We investigate the unique central extension K of the Lie algebra of that group. We
determine the first and second cohomologies, its ideal structure and the automorphism
group. We define a generalization of Verma modules and determine when these represen-
tations are irreducible. Its endomorphism semigroup is investigated and some unitary
representations of the group which do not extend to Diff(S1) are constructed.

1 Introduction

In this paper we study a certain subalgebra of the Virasoro algebra defined below. The
Virasoro algebra is a fundamental object in conformal quantum field theory.

The symmetry group of the chiral component of a conformal field theory in 1+1 dimen-
sion is B0, the group of all orientation-preserving diffeomorphisms of the real line which
are smooth at the point at infinity (for example, see [15]). Instead of working on R, it is
customary to consider a chiral model on the compactified line S1 with the symmetry group
Diff(S1). In a quantum theory, we are interested in its projective representations.

With positivity of the energy, which is a physical requirement, the representation theory
of the central extension of Diff(S1) has been well studied [15]. In any irreducible unitary
projective representation of Diff(S1), the central element acts as a scalar c. The (central
extension of the) group Diff(S1) has a subgroup S1 of rotations and by positivity of energy
the subgroup has the lowest eigenvalue h ≥ 0. It is known for which values of c and h there
exist irreducible, unitary, positive-energy, projective representations of Diff(S1). All such
representations are classified by c and h.

The Lie algebra of Diff(S1) is the algebra of all the smooth vector fields on S1 [14]. It
is sometimes convenient to study its polynomial subalgebra, the Witt algebra. The Witt
algebra has a unique central extension [15] called the Virasoro algebra Vir. In a similar way
∗Supported in part by the ERC Advanced Grant 227458 OACFT “Operator Algebras and Conformal

Field Theory”.
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as above, we can define lowest energy representations of Vir with parameters c, h and it is
known when these representations are unitary [6]. On the other hand, for any positive energy,
unitary lowest weight representation of Vir there is a corresponding projective representation
of Diff(S1) [4].

In a physical context, conformal field theory in 1+1 dimensional Minkowski space can be
decomposed into its chiral components on two lightlines. Thus it is mathematically useful
to study the subgroup B0 of stabilizers of one point (“the point at infinity”) of Diff(S1).
We can construct nets of von Neumann algebras on R from representations of B0, and nets
on R2 by tensor product. The theory of local quantum physics are extensively studied
with techniques of von Neumann algebras [5][1][10][7]. In the case of nets on S1, the nets
generated by Diff(S1) play a key role in the classification of diffeomorphism covariant nets
[8]. This gives a strong motivation for studying the representation theory of B0, since for
nets on R the group B0 should play a similar role to that of Diff(S1) for nets on S1.

Some properties of the restrictions of representations of Diff(S1) to B0 have been studied.
For example, the restriction to B0 of every irreducible unitary positive energy representation
of Diff(S1) is irreducible [17]. Different values of c, h may correspond to equivalent represen-
tations [17]. Unfortunately little is known about representations which are not restrictions.
In this paper we address this problem.

1.1 Preliminaries

We identify the real line with the punctured circle through the Cayley transformation:

x = i
1 + z

1− z
⇐⇒ z =

x− i
x+ i

, x ∈ R, z ∈ S1 ⊂ C.

The group Diff(S1) contains the following important one-parameter subgroups. They are
called respectively the groups of rotations, translations and dilations:

ρs(z) = eisz, for z ∈ S1 ⊂ C
τs(x) = x+ s, for x ∈ R
δs(x) = esx, for x ∈ R,

where rotations are defined in the circle picture, on the other hand translations and dilations
are defined in the real line picture. Here we see that the point z = e2πiθ = 1 or θ = 0 on the
circle is identified with the point at infinity in the real line picture.

The positivity of the energy for Diff(S1) is usually defined as the boundedness from below
of the generator of the group of rotation (since we consider projective representations, the
generator of a one-parameter subgroup is defined only up to an addition of a real scalar
multiple of the identity). It is well known that this is equivalent to the boundedness from
below of the generator of the group of translations (see [11]). The latter definition is the
one having its origin in physics. Concerning the group B0, as it does not include the group
of rotations, the positivity of energy is defined by boundedness from below of the generator
of the group of translations.

In the rest of this section we explain our notation regarding some infinite dimensional
Lie algebras (see [15]).

The Witt algebra (we denote it by Witt) is the Lie algebra generated by Ln for n ∈ Z
with the following commutation relations:

[Lm, Ln] = (m− n)Lm+n.
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The Witt algebra has a central extension with a central element C, unique up to isomor-
phisms, with the following commutation relations:

[Lm, Ln] = (m− n)Lm+n +
C

12
m(m2 − 1)δm,−n.

This algebra is called the Virasoro algebra Vir. On Witt and Vir we can define a *-operation
by

(Ln)∗ = L−n, C
∗ = C.

The Witt algebra is a subalgebra of the Lie algebra Vect(S1) of smooth complex functions
on the circle S1 with the following commutation relations:

[f, g] = fg′ − f ′g,

and the correspondence Ln 7→ ieinθ. Its real part is the Lie algebra of the group of diffeo-
morphisms of S1[14]. This algebra is equipped with the smooth topology, namely, a net of
functions fn converges to f if and only if the k-th derivatives f (k)

n converge to f (k) uniformly
on S1 for all k ≥ 0. The central extension above extends continuously to this algebra. As
the group Diff(S1) is a manifold modelled on Vect(S1), it is equipped with the induced
topology of the smooth topology of Vect(S1).

We consider a subspace K0 of the Witt algebra spanned by Kn = Ln − L0 for n 6= 0.
By a straightforward calculation this subspace is indeed a *-subalgebra with the following
commutation relations:

[Km,Kn] =
{

(m− n)Km+n −mKm + nKn (m 6= −n)
−mKm −mK−m (m = −n)

.

We denote Vect(S1)0 ⊂ Vect(S1) the subalgebra of smooth functions which vanish on
θ = 0. This is the Lie algebra of the group B0 of all the diffeomorphisms of S1 which
stabilize θ = 0. The algebra K0 is a *-subalgebra of Vect(S1)0.

We will show that K0 has a unique (up to isomorphisms) central extension which is a
subalgebra of Vir. The central extension is denoted by K and has the following commutation
relations:

[Km,Kn] =
{

(m− n)Km+n −mKm + nKn (m 6= −n)
−mKm −mK−m + C

12m(m2 − 1) (m = −n)
. (1)

In section 2, we determine the first and second cohomologies of the algebra K0. The
first cohomology corresponds to one dimensional representations and the second cohomology
corresponds to central extensions. It will be shown that the only possible central extension
is the natural inclusion into the Virasoro algebra. On the other hand the first cohomology
is one dimensional and does not extend to Vir.

In section 3, we determine the ideal structure of K0 and calculate their commutator
subalgebras. It will be shown that all of these ideals can be defined by the vanishing of
certain derivatives at the point at infinity.

In section 4, we determine the automorphism group of the central extensionK ofK0. This
group turns out to be very small but contains some elements not extending to automorphisms
of the Virasoro algebra.
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In section 5, we construct several representations of K. Each of these representations
has an analogue of a lowest weight vector and has the universal property. Thanks to the
result of Feigin and Fuks [3], we can completely determine which of these representations
are irreducible.

In section 6, we investigate the endomorphism semigroup of K. Compositions of these
endomorphisms with known unitary representations give rise some strange kinds of repre-
sentations. Corresponding representations of the group B0 are studied in section 7.

2 First and Second cohomologies of K0

We will discuss the following cohomology groups of K0 [15]:

H1(K0,C) := {φ : K0 → C| φ is linear and vanishes on [K0,K0].}
Z2(K0,C) := {ω : K0 ×K0 → C| ω is bilinear and

for a, b, c ∈ K0 satisfies ω(a, b) = −ω(b, a),
ω([a, b], c) + ω([b, c], a) + ω([c, a], b) = 0}

B2(K0,C) := {ω : K0 ×K0 → C| there is µ s.t ω(a, b) = µ([a, b]).}
H2(K0,C) := Z2/B2.

Elements in the (additive) group H1 correspond to one dimensional representations of
K0. The group H2 corresponds to the set of all central extensions of K0. We call H1 and
H2 the first and the second cohomology groups of K0, respectively.

Lemma 2.1. [K0,K0] has codimension one in K0.

Proof. Let us define a linear functional φ on K0 by the following:

φ(Kn) = n.

As Kn’s form a basis of K0, this defines a linear functional. By the commutation relation
above, we have

φ([Km,Kn])



(for the case m 6= −n)
= (m− n)φ(Km+n)−mφ(Km) + nφ(Kn)

= (m− n)(m+ n)−m2 + n2

= 0

(for the case m = −n)
= −mφ(Km)−mφ(K−m)

= −m2 −m(−m)
= 0

.

Hence this vanishes on the commutator. The linear functional φ is nontrivial and the
commutator subalgebra [K0,K0] is in the nontrivial kernel of φ. In particular, [K0,K0] is
not equal to K0.

To see that the commutator subalgebra of K0 has codimension one, we will show that all
the element of K0 can be obtained as the linear combination of K1 and elements of [K0,K0].
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Let us note that

[K1,K−1] = −K1 −K−1

[K2,K−1] = 3K1 − 2K2 −K−1

[K−2,K1] = −3K−1 + 2K−2 +K1.

So K−1,K2,K−2 can be obtained. For other elements in the basis, we only need to see

[Kn,K1] = (n− 1)Kn+1 − nKn +K1

[K−n,K−1] = −(n− 1)K−n−1 + nK−n −K−1,

and to use mathematical induction.

Remark 2.2. In proposition 3.2 of [17] it is claimed that [K,K] = K where K is the central
extension of K0 defined in the introduction of the present paper. It is wrong, as seen
in lemma 2.1: K, as well as K0, is not perfect. In the proof of [17], there is a sentence
“confronting what we have just obtained with (14), we get that ...”, which does not make
sense. In accordance with this, the remark after proposition 3.6 and corollary 3.8 in that
article should be corrected as to allow the difference by scalar. On the other hand, what is
used in corollary 3.3 is only the fact that φ(C) = 0 and the conclusion is not changed. The
main results of the paper are not at all affected.

Corollary 2.3. H1(K0,C) is one dimensional. In particular, there is a unique (up to scalar)
one dimensional representation of K0.

Next we will determine the second cohomology group of K0.

Lemma 2.4. The following set forms a basis of the commutator subalgebra of K0.

[Kn,K1], [K−n,K−1] for n > 1, [K−2,K1], [K2,K−1], [K1,K−1].

Proof. As we have seen, the commutator subalgebra is the kernel of the functional of lemma
2.1. The last three elements in the set are linearly independent and contained in the sub-
space spanned by K−2,K−1,K1 and K2. The elements [Kn,K1] (respectively the elements
[K−n,K−1],) contain Kn+1 terms (respectively K−(n+1) terms,) hence they are independent
and form the basis of the commutator subalgebra.

Theorem 2.5. H2(K0,C) is one dimensional.

Proof. Take an element ω of Z2(K0,C). Let ωm,n := ω(Km,Kn) for m,n ∈ Z \ {0} be
complex numbers. From the definition of Z2(K0,C), the following holds:

ωm,n = −ωn,m
0 = ω(Kl, [Km,Kn]) + ω(Kn, [Kl,Km]) + ω(Km, [Kn,Kl])

= (m− n)ωl,m+n −mωl,m + nωl,n

+(l −m)ωn,l+m − lωn,l +mωn,m (2)
+(n− l)ωm,n+l − nωm,n + lωm,l,

where this holds also for the cases l + m = 0,m + n = 0, or n + l = 0 if we define
wk,0 = w0,k = 0 for k ∈ Z.
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Let α be a linear functional on the commutator subalgebra defined by

α([Kn,K1]) = ωn,1 for n > 1
α([K−n,K−1]) = ω−n,−1 for n > 1
α([K−2,K1]) = ω−2,1

α([K2,K−1]) = ω2,−1

α([K1,K−1]) = ω1,−1.

This definition is legitimate by lemma 2.4.
If we define ω′m,n = ωm,n−α([Km,Kn]), there is a corresponding element ω′ in Z2(K0,C)

and belongs to the same class in Z2/B2(K0). To keep the brief notation, we assume from
the beginning the following:

ωn,1 = ω−n,−1 = ω−2,1 = ω2,−1 = ω1,−1 = 0 for n > 1

and we will show that ωm,n = 0 if m 6= −n.
Now we set l = 2,m = 1, n = −1 in (2) to get:

0 = 2ω2,0 − ω2,1 − ω2,−1 + ω−1,3 − 2ω−1,2 + ω−1,1 − 3ω1,1 + ω1,−1 + 2ω1,2.

From this we see that ω−1,3 vanishes because by assumption all the other terms are zero.
Similarly if we let l = −2,m = 1, n = 1, we have ω1,−3 = 0.

Furthermore, setting l > 1,m = 1, n = −1 we get

0 = 2ωl,0 − ωl,1 − ωl,−1 + (l − 1)ω−1,l+1 − lω−1,l + ω−1,1

− (l + 1)ω1,l−1 + ω1,−1 + lω1,l.

This implies ω−1,l+1 = 0 by induction for l > 1. Similarly, letting l < −1,m = 1, n = −1 we
see ω1,l−1 = 0 for l < −1.

Next we use formula (2) substituting l = 1, n = −m to get

0 = 2mω1,0 −mω1,m −mω1,−m + (1−m)ω−m,m+1 − ω−m,1 +mω−m,m

+ (−m− 1)ωm,1−m +mωm,−m + ωm,1.

Since ω1,m = ω−1,m = 0, as we have seen above, and by the antisymmetry ω−m,m = −ωm,−m,
we have

(1−m)ω−m,1+m + (−m− 1)ωm,1−m = 0.

By assumption, we have ω−1,2 = 0. By induction on m, we observe ω−m,m+1 = 0. Similarly
it holds ω−m,m−1 = 0.

Finally we fix k ∈ N and let l = 1, n = k −m to get

0 = (2m− k)ω1,k −mω1,m + (k −m)ω1,k−m + (1−m)ωk−m,m+1 − ωk−m,1
+mωk−m,m + (k −m− 1)ωm,k−m+1 − (k −m)ωm,k−m + ωm,1.

By assumption, as before, the preceding equation becomes the following:

0 = (1−m)ωk−m,m+1 + kωk−m,m + (k −m− 1)ωm,k−m+1

= (1−m)ω(k+1)−(m+1),m+1 + kωk−m,m + (k −m− 1)ωm,(k+1)−m (3)
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If we let k = 1, the second term vanishes by the observation above and we see

(1−m)ω1−m,m+1 −mωm,2−m = 0

Again by induction on m, we see ω2−m,m vanishes for all m. Then by induction on k and
using (3), we can conclude ωk−m,m vanishes for all k ∈ N,m ∈ Z. Similar argument applies
for k < 0.

Summarizing, if we have an element in Z2(K0,C), we may assume that all the off-
diagonal parts vanish. Letting l = −m − n in (2), we see that there is a possibility of one
(and only) dimensional second cohomology as in the case of Virasoro algebra (see [15]).

This theorem shows that there is a unique central extension (up to isomorphism) of K0.
We denote the central extension by K. By fixing a cocycle ω ∈ Z2(K0,C) \ B2(K0,C) the
algebra K is formally defined as K0 ⊕ C with the commutation relations

[(x, a), (y, b)] := ([x, y], ω(x, y)) for x, y ∈ K0, a, b ∈ C.

Equivalently, in this article and in literature, using a formal central element C, one writes:

[x+ aC, y + bC] = [x, y] + ω(x, y)C.

Proposition 2.6. Let us fix a real number λ. On K, there is a *-automorphism Λ defined
by Λ(Kn) = Kn + inλC and Λ(C) 7→ C.

Proof. It is clear that this preserves the *-operation. Since the change by this mapping
is just an addition of a scalar multiple of the central element, this does not change the
commutator. On the other hand, as seen in lemma 2.1, the map Kn 7→ n vanishes on the
commutator subalgebra, hence the linear map in question preserves the commutators.

Proposition 2.7. The *-automorphism in Proposition 2.6 does not extend to the Virasoro
algebra unless λ = 0.

Proof. Assume the contrary, namely that Λ extends to Vir. Since K has codimension one
in the Virasoro algebra, we only have to determine where L0 is mapped. The algebra Vir is
the linear span of Kn’s, C and L0, hence Λ(L0) takes the following form.

Λ(L0) =
∑
n6=0

anKn + a0L0 + bC,

where an’s and b are complex numbers and an’s vanish except for finitely many n.
On the other hand, in Vir, we have

[Kn, L0] = [Ln − L0, L0] = nLn = nKn + nL0.

Since in the sum of Λ(L0) only finitely many terms appear, let N be the largest integer with
which aN does not vanish. If N > 1, recalling [K1, L0] = K1 + L0, we have

Λ([K1, L0]) = [K1 + iλC,Λ(L0)]
= Λ(K1) + Λ(L0),

which is impossible because the second expression contains KN+1 term but the last expres-
sion does not. Hence N must be less than 2. By the same argument replacing K1 by K2, we
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have that N must be less than 1. Similarly replacing K1 by K−1 or K−2, it can be shown
that Λ(L0) must be of the form

Λ(L0) = a0L0 + bC.

We need to note that a0 and b must be real as Λ is a *-automorphism.
Now let us calculate again

[Λ(K1),Λ(L0)] = [K1 + iλC, a0L0 + b · C]
= a0K1 + a0L0,

by assumption this must be equal to

Λ([K1, L0]) = Λ(K1 + L0)
= K1 + a0L0 + (b+ iλ)C,

which is impossible since b is real, except the case λ = 0 (and in this case b = 0, a0 = 1).

Remark 2.8. When we make compositions of these automorphisms with a representation
of K, we might obtain inequivalent representations of K. However these representations
integrate to equivalent projective unitary representations of the group B0, since with these
automorphisms the changes of self-adjoint elements in K are only scalars and the changes of
their exponentials are only phases, therefore equivalent as projective representations of B0.

3 Derived subalgebras and groups

3.1 A sequence of ideals in K0

We will investigate the derived subalgebras of K0. The derived subalgebra (or the com-
mutator subalgebra) of a Lie algebra is, by definition, the subalgebra generated by all the
commutators of the given Lie algebra.

The easiest and most important property of the commutator subalgebra is that it is an
ideal. This is clear from the definition. If a Lie algebra is simple, then the commutator
subalgebra must coincide with the Lie algebra itself. This is the case for the Virasoro
algebra.

On the other hand, the algebra K0 and its unique nontrivial central extension K are not
simple. This can be seen from lemma 2.1: the commutator subalgebra (which we denote by
K(1)

0 ) has codimension 1 in K0 and it is the kernel of a homomorphism of the Lie algebra.
Let us denote Vect(S1)0 the subalgebra of Vect(S1) whose element vanish at θ = 0. We

remind that the commutator on Vect(S1) is the following.

[f, g] = fg′ − f ′g. (4)

Now it is easy to see that Vect(S1)0 is a subalgebra. Let us recall that we embed K0 in
Vect(S1)0 by the correspondence Kn 7→ i(exp(in·) − 1). We clarify the meaning of the
homomorphism φ by considering the larger algebra Vect(S1)0.
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Lemma 3.1. The homomorphism φ : Kn 7→ −n on K0 continuously extends to Vect(S1)0
and the result is

φ : Vect(S1)0 → R
f 7→ f ′(0).

Proof. It is easy to see that φ and the derivative on 0 coincide. The latter is clearly contin-
uous on Vect(S1)0 in its smooth topology.

To see that the extension is still a homomorphism of Vect(S1)0, we only have to calculate
the derivative of [f, g] on θ = 0:

d

dt
[f, g](0) =

d

dt

(
fg′ − f ′g

)∣∣∣∣
t=0

=
(
f ′g′ + fg′′ − f ′′g − f ′g′

)
(0)

=
(
f ′′g − fg′′

)
(0)

= 0,

since f and g are elements of Vect(S1)0.

We set φ1 := φ and we define similarly,

φk : Vect(S1)0 → R
f 7→ f (k)(0),

where f (k) is the k-th derivative of the function f . Again these maps are continuous in the
topology of smooth vectors.

We show the following.

Lemma 3.2. Let f and g be in Vect(S1)0. Suppose φm(f) = φm(g) = 0 for m = 1, · · · k.
Then φm ([f, g]) = φm(fg′ − f ′g) = 0 for m = 1, · · · 2k + 1.

Proof. First we recall the general Leibniz rule:

(F ·G)(k)(θ) =
k∑

m=0

kCmF
(m)(θ)G(k−m)(θ),

where kCm denotes the choose function k!
m!(k−m)! . Then, in each term of the m-th derivatives

of [f, g] = fg′ − f ′g where m ≤ 2k, there appears a factor which is a derivative f or g of
order m ≤ k and the term vanishes by assumption. To consider the (2k + 1)-th derivative,
the only nonvanishing terms are

[f, g](2k+1)(θ) = 2k+1Ck+1f
(k+1)g(k+1) − 2k+1Ckf

(k+1)g(k+1)

= 0.

Proposition 3.3. The subspace Vect(S1)k = {f ∈ Vect(S1)0 : φ1(f) = · · · = φk(f) = 0} is
an ideal of Vect(S1)0 and it holds that

[Vect(S1)k,Vect(S1)k] ⊂ Vect(S1)2k+1
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Proof. The latter part follows directly from lemma 3.2. To show that Vect(S1)k is an ideal,
we only have to take f ∈ Vect(S1)0 and g ∈ Vect(S1)k and to calculate derivatives of [f, g].
By the Leibniz rule above, for m ≤ k, in each term of the m-th derivative of [f, g] there is
a factor which is a derivative of g of order less than m or f itself and they must vanish at
θ = 0 by assumption.

Note that if we restrict φm to K0, it acts like φm(Kk) = i(ik)m. Defining Kk = {x ∈
K0 : φ1(x) = · · ·φk(x) = 0}, we can see similarly that {Kk} are ideals of K0 and that
[Kk,Kk] ⊂ K2k+1.

3.2 Basis for Kk
Our next task is to determine the derived subalgebras of {Kk}. For this purpose, it is
appropriate to take a new basis for each Kk.

The following observation is easy.

Lemma 3.4. If V is the vector space spanned by a countable basis {Bn}n∈Z, then {Bn −
Bn+1}n∈Z is a linearly independent set and the vector space spanned by them has codimension
1 in V .

We set recursively,

M0
n := Ln − Ln+1

M1
n := M0

n −M0
n+1

Mk+1
n := Mk

n −Mk
n+1,

where {Ln} is the basis of the Witt algebra. By lemma 3.4, we have a sequence of sub-
spaces of Witt. We will see that they coincide with {Kn}. For this purpose we need the
combinatorial formula in lemma 3.7.

Remark 3.5. We use the convention that a polynomial of degree −1 is 0.

Lemma 3.6. If k ≥ 0 and if p(x) is a polynomial of x of degree k, then p(x)− p(x+ 1) is
a polynomial of degree k − 1.

Proof. We just have to consider the terms of the highest and the second highest degrees.

We fix a natural number k. Let us define a sequence of polynomials recursively by

pk(x) = xk,

pm−1(x) = pm(x)− pm(x+ 1) for 0 ≤ m ≤ k.

Lemma 3.7. We have the explicit formulae for −1 ≤ m ≤ k.

pm(x) =
k−m∑
l=0

(x+ l)k(−1)lk−mCl.
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Proof. We show this lemma by induction. If m = k, pm(x) = xk and the lemma holds.
Let us assume that the formula holds for m. We use the well-known combinatorial fact

that if 1 < j ≤ i then iCj−1 + iCj = i+1Cj . Now let us calculate

pm−1(x) = pm(x)− pm(x+ 1)

=
k−m∑
l=0

(x+ l)k(−1)lk−mCl −
k−m∑
l=0

(x+ 1 + l)k(−1)lk−mCl

=
k−m∑
l=0

(x+ l)k(−1)lk−mCl −
k−m+1∑
l′=1

(x+ l′)k(−1)l
′−1

k−mCl′−1

=
k−m∑
l=0

(x+ l)k(−1)lk−mCl +
k−m+1∑
l=1

(x+ l)k(−1)lk−mCl−1

= (x+ k −m+ 1)k(−1)k−m+1

+
k−m∑
l=1

(x+ l)k(−1)l (k−mCl−1 + k−mCl) + xk

= (x+ k −m+ 1)k(−1)k−m+1 +
k−m∑
l=1

(x+ l)k(−1)lk−m+1Cl + xk

=
k−m+1∑
l=0

(x+ l)k(−1)lk−mCl.

Proposition 3.8. For k ≥ 0, as a polynomial of x, it holds

k+1∑
l=0

(x+ l)k(−1)lk+1Cl = 0.

Proof. If we put m = −1 in lemma 3.7, we get the left hand side of this formula. On the
other hand, by definition of p−1 and by lemma 3.6, it must be a polynomial of degree −1,
in other words, it vanishes.

We want to apply this formula to the calculation of the functionals φk. For this purpose
we need formulae for {Mk

n} (which are defined at the beginning of this subsection) in terms
{Ln}.

Proposition 3.9. It holds that

Mk
n =

k+1∑
l=0

(−1)lk+1ClLn+l

Proof. Again we show this by induction. If k = 0, then M0
n = Ln − Ln+1 and this case is

proved.
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Assume it holds Mk
n =

∑k+1
l=0 (−1)lk+1ClLn+l. Again using the combinatorial formula

iCj−1 + iCj = i+1Cj , let us calculate

Mk+1
n = Mk

n −Mk
n+1

=
k+1∑
l=0

(−1)lk+1ClLn+l −
k+1∑
l=0

(−1)lk+1ClLn+1+l

=
k+1∑
l=0

(−1)lk+1ClLn+l −
k+2∑
l′=1

(−1)l
′−1

k+1Cl′−1Ln+l′

=
k+1∑
l=0

(−1)lk+1ClLn+l +
k+2∑
l=1

(−1)lk+1Cl−1Ln+l

= (−1)k+2Ln+k+2 +
k+1∑
l=1

(−1)l (k+1Cl + k+1Cl−1)Ln+l + L0

=
k+2∑
l=0

(−1)lk+2ClLn+l.

And this is what we had to prove.

Corollary 3.10. For fixed k ≥ 0, {Mk
n |n ∈ Z} is a basis of Kk.

Proof. We can extend φk to the Witt algebra by φk(Ln) = i(in)k (for k = 0, φ0(Ln) = i by
definition).

Then, it is immediate that we have the following.

K0 = {x ∈Witt : φ0(x) = 0}
Kk = {x ∈Witt : φ0(x) = φ1(x) = · · · = φk(x) = 0}.

Clearly {φk} are independent and each Kk+1 has codimension 1 in Kk.
We will prove the corollary by induction. The set {M0

n} spans a subspace of Witt with
codimension 1 by lemma 3.4 and it is immediate to see that φ0(M0

n) = 0. On the other
hand K0 is the kernel of φ0 and has codimension one in Witt. Hence they must coincide.

Assume that {Mk−1
n } is the basis of Kk−1. Then it is obvious that Mk

n = Mk−1
n −Mk−1

n+1 ∈
Kk−1. Now, by proposition 3.9 and proposition 3.7, we see easily that for n ∈ Z

φk(Mk
n) =

k+1∑
l=0

(−1)lk+1Clφk(Ln+l)

=
k+1∑
l=0

(−1)lk+1Cl(n+ l)k

= 0.

This means that Mk
n ∈ Kk.

The linear span of {Mk
n}n∈Z must have codimension 1 by lemma 3.4 in Kk−1, therefore

it must coincide with Kk, since Kk has codimension 1 in Kk−1.

12



3.3 Commutator subalgebras of Kk
Now we can completely determine all the commutator subalgebras of Kk. The key fact is
that we can easily calculate the commutator in the basis we have obtained in the previous
section.

Proposition 3.11. Let k ≥ 0 and m,n ∈ Z. It holds that

[Mk
m,M

k
n ] = (m− n)M2k+1

m+n

Proof. We prove the proposition by induction. The case for k = 0 is shown as follows.

[M0
m,M

0
n] = [Lm − Lm+1, Ln − Ln+1]

= (m− n)Lm+n − (m+ 1− n)Lm+1+n

−(m− n− 1)Lm+n+1 + (m− n)Lm+1+n+1

= (m− n) (Lm+n − Lm+n+1)− (m− n) (Lm+n+1 − Lm+n+2)
= (m− n)(M0

m+n −M0
m+n+1)

= (m− n)M1
m+n

Let us assume that the formula holds for k. We calculate

[Mk+1
m ,Mk+1

n ] = [Mk
m −Mk

m+1,M
k
n −Mk

n+1]

= (m− n)M2k+1
m+n − (m+ 1− n)M2k+1

m+1+n

−(m− n− 1)M2k+1
m+n+1 + (m− n)M2k+1

m+1+n+1

= (m− n)
((
M2k+1
m+n −M2k+1

m+n+1

)
−
(
M2k+1
m+n+1 −M

2k+1
m+n+2

))
= (m− n)(M2k+2

m+n −M2k+2
m+n+1)

= (m− n)M2k+3
m+n .

This completes the induction.

Remark 3.12. The Witt algebra can be treated as K−1 in this context, in the sense that the
formula of the proposition holds for k = −1.

Theorem 3.13. It holds that K2k+1 = K(1)
k , where K(1)

k is the derived subalgebra of Kk.

Proof. It is clear from corollary 3.10 and proposition 3.11 that the derived subalgebra of Kk
is included in K2k+1 and the commutators of elements in the basis of Kk exhaust the basis
of K2k+1.

3.4 The ideal structure of K0

The basis obtained in the previous subsection is suitable to determine all the ideals of K0.
In fact, we will see that any ideal of K0 must coincide with one of {Kk} or kerφ1 ∩ kerφ3.

Lemma 3.14. If I is a nontrivial ideal of K0, then it includes Kk for some k.
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Proof. Let x be a nontrivial element of I. It has an expansion x =
∑N

j=1 ajM
0
nj

and we
may assume aj 6= 0 for all j. Since I is an ideal of K0, any commutator with x must be in
I again. In particular,

[M0
nN
, x] =

N∑
j=1

aj(nN − nj)M1
nj+nN

=
N−1∑
j=1

bjM
1
nj+nN

,

where each of bj = aj(nN − nj), for j = 1, 2, · · ·N − 1, is nonzero, must be an element of I.
Similarly [M1

nN+nN−1
, [M0

nN
, x]] =

∑N−2
j=1 cjM

1
nj+nN+nN−1

is also an element of I. Re-
peating this procedure, we see that I contains some M l

m. Then, using the commutation
relation in Kl, we see that I contains {M2l+1

n }n6=2m and {M4l+3
n }n∈Z. This implies that I

includes K4l+3.

To prove the next lemma, we need to recall that K0 is a subalgebra of smooth vector
fields on S1 and all the functionals {φk}k∈N have analytic interpretations as in subsection
3.1. There, we have identified the real line with the punctured circle, the point at infinity
with the point θ = 0. The algebra K0 is realized as a subalgebra of smooth functions on the
circle vanishing at θ = 0. Seen as the algebra of functions, their commutation relations are
[x, y] = xy′ − x′y.

Lemma 3.15. Let I be a nontrivial ideal of K0 and let k be the smallest number such that
Kk is included in I (this exists by lemma 3.14). If k ≥ 4, then I = Kk.

Proof. We will prove this lemma by contradiction. Let us assume that I 6= Kk and that
x ∈ I \ Kk. Possible cases are (1) x ∈ K2 (2) x ∈ K0 \ K1 (3) x ∈ K1 \ K2. We treat these
cases in this order.

If x ∈ K2, then there is l such that 2 ≤ l < k and x ∈ Kl \ Kl+1. Let us take an element
y from K1 \K2. Then, since Kl is an ideal of K0 by the remark after proposition 3.3, we see
[x, y] ∈ Kl and we calculate the derivatives at θ = 0. By the assumption on x and y, the
derivatives vanish up to certain orders and we have the following:

[x, y](l+1)(0) =
l+1∑
k=0

l+1Ck

(
y(k)(0)x(l+1−k+1)(0)− y(k+1)(0)x(l+1−k)(0)

)
= 0,

[x, y](l+2)(0) =
l+2∑
k=0

l+2Ck

(
y(k)(0)x(l+2−k+1)(0)− y(k+1)(0)x(l+2−k)(0)

)
= (l+2C2 − l+2C1)y(2)(0)x(l+1)(0)

=
(l + 2)(l − 1)

2
y(2)(0)x(l+1)(0).

The latter cannot be zero by assumption and the fact 2 ≤ l. This means [x, y] is in Kl+1 \
Kl+2. Repeating this procedure, we obtain an element of I in Kk−1 \ Kk. Therefore I
contains Kk−1 because by definition I contains Kk and Kk−1 has codimension 1 in Kk−1.
But this contradicts the definition of k and we see that x ∈ K2 is impossible.
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Next we x ∈ K0 \ K1. Then we can expand x = a0M
0
0 + a1M

1
0 + y (here we use same

symbols as before to save the number of characters) where y ∈ K2, hence a0 is nonzero. If
a1 6= 0 we have [M0

0 , x] = a1M
1
1 + [M0

0 , y]. If a1 = 0 we have [M0
1 , x] = a0M

1
1 + [M0

1 , y].
Therefore at least one of these is in K1 \ K2 and we may assume that x ∈ K1 \ K2.

Let us assume that x ∈ K1 \K2. Here we consider the following two cases, namely (3-1)
φ3(x) 6= 0 (3-2) φ3(x) = 0. If φ3(x) 6= 0 and y ∈ K0 \ K1, then we see that [x, y] + y′(0)x ∈
K2 \ K3 (and this element is clearly in I). In fact, by a direct calculation or by the Leibniz
rule, we see (

[x, y] + y′(0)x
)(2) (0) = −y′(0)x(2)(0) + y′(0)x(2)(0)

= 0,(
[x, y] + y′(0)x

)(3) (0) = −y′(0)x(2)(0) + y′(0)x(2)(0)

= −2y′(0)x(3)(0) + y′(0)x(3)(0)
= −y′(0)x(3)(0).

This implies that there is an element of I in K2 \ K3. By repeating the argument in the
paragraph for the case x ∈ K2, we see again a contradiction. Hence we must have φ3(x) = 0.

By the calculation above, this time [x, y] + y′(0)x ∈ K3, but using φ3(x) = 0 we see(
[x, y] + y′(0)x

)(4) (0) = 2y(3)(0)x(2)(0)− 3y′(0)x(4)(0) + y′(0)x(4)(0)

= 2y(3)(0)x(2)(0)− 2y′(0)x(4)(0).

Hence with an appropriate element y this does not vanish. That means [x, y] + y′(0)x is
an element of K3 \ K4. By the same argument as in the case of x ∈ K2, we see that this
contradicts the definition of k and this completes the proof.

We state now the final result of this subsection.

Theorem 3.16. If I is an ideal of K0, then the possibilities are

• I = {0}

• I = Kk for some k ≥ 0

• I = kerφ1 ∩ kerφ3.

Proof. As before, we can define a number k ≥ 0 as the smallest number such that Kk is
included in I.

If k = 0 or k = 1, then there is nothing to do because the former case means I = K0

and in the latter case K1 has already codimension 1 and I must coincide with it.
Next we consider the case k = 2. Since K2 has codimension 2 in K0, it holds I = K2

or I has an extra element. But the latter case cannot happen because if x ∈ I \ K2 we
can expand x = a0M

0
0 + a1M

1
0 + y (the same symbols again, but the coefficients of a

different element) where y ∈ K2 and a0 6= 0 (since otherwise x ∈ K1 and contradicts the
assumption that k = 2). If a1 6= 0 then [M0

0 , x] = a1M
1
1 + [M0

0 , y] ∈ K1 \ K2. If a1 = 0 then
[M0

1 , x] = a0M
1
1 + [M0

1 , y] ∈ K1 \ K2. In both cases they contradict the assumption k = 2.
Let us assume k = 3 and I 6= K3. We can take an element x ∈ I \ K3 and expand it as

x = a0M
0
0 + a1M

1
0 + a2M

2
0 + y

15



(same symbols again to different coefficients) where y ∈ K3. By straightforward calculations
we see that:

[M0
0 , x] = a1M

1
1 + 2a2M

2
1 + [M0

0 , y]

[M0
1 , x] = (a0 + a1)M1

1 + a2(M2
1 +M2

2 )[M0
1 , y]

[M0
1 , [M

0
0 , x]] = a1M

1
3 + 4a2M

2
3 + [M0

1 , [M
0
0 , y]]

[M0
1 , [M

0
1 , x]] = (a0 + a1)M1

3 + a2(M2
3 − 3M2

4 ).

We note that all these elements are in I since it is an ideal. By comparing the first and
third equations, we see

[M0
0 , x]− [M0

1 , [M
0
0 , x]] = a1(M2

1 +M2
2 ) + 2a2(M2

1 − 2M2
3 ) + z

= 2(a1 − a2)M2
3 + a1(M3

1 + 2M3
2 ) + 2a2(M3

1 +M3
2 ) + z,

where z is the sum of commutators of y and hence again in K3. Now it is easy to see that
this element is in K3 if and only if a1 = a2. And this must be in K3, since otherwise it is in
K2 \ K3 and contradicts the assumption that k = 3. Therefore we have a1 = a2.

Next we consider the difference of the second and fourth equations with a1 = a2 above
and we get

[M0
1 , x]− [M0

1 , [M
0
1 , x]] = (a0 + a1)(M2

1 +M2
2 ) +

a1(M2
1 +M2

2 −M2
3 − 3M2

4 ) + z′

= a0(M2
1 +M2

2 )
+a1(2M2

1 + 2M2
2 −M2

3 − 3M2
4 ) + z′

= a0(M2
1 +M2

2 ) + a1(2M3
1 + 4M3

2 + 3M3
3 ) + z′,

where z′ is again an element of K3. As before it is in I. By the assumption k = 3 it is
contained in K3, therefore a0 = 0. This indicates that an extra element of I must have the
form

x = a1(M1
0 +M2

0 )

and it is immediate to see this is in kerφ1 ∩ kerφ3. Since K3 has codimension 1 in this
intersection, I must be equal to kerφ1 ∩ kerφ3.

By calculating derivatives, we can see that kerφ1 ∩ kerφ3 is surely an ideal of Vect(S1)0
and it is also the case even when restricted to K0.

The case k ≥ 4 is already done in lemma 3.15.

3.5 The derived subgroup of B0

As mentioned in the introduction, Diff(S1) is the group of smooth, orientation preserving
diffeomorphisms of S1. The group B0 is the subgroup of Diff(S1) whose elements fix the
point θ = 0. Identifying S1 and R/2πZ, we can think of an element of B0 as a smooth
function g on R, satisfying g(θ+2π) = g(θ)+2π, g(0) = 0 and g′(θ) > 0. The last condition
comes from the fact that g has a smooth inverse. On the other hand, a function on R with
the conditions above can be considered as an element of B0. And it is easy to see that the
composition operation of the group coincides with the composition of functions. In what
follows we identify the group B0 with the set of smooth functions with these conditions.

Under this identification, Lie algebra Vect(S1) of B0 is seen as the space of smooth
functions f such that f(0) = 0 and f(θ + 2π) = f(θ).
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Proposition 3.17. B1 := {g ∈ B0 : g′(0) = 1} is a subgroup of B0.

Proof. By a simple calculation.

Proposition 3.18. The derived group [B0, B0] is included in B1.

Proof. Take elements g, h from B0. It holds that

d

dθ
[g, h](0) =

d

dθ

(
g ◦ h ◦ g−1 ◦ h−1

)
(0)

= g′(h(g−1(h−1(0))))× h′(g−1(h−1(0)))
×(g−1)′(h−1(0))× (h−1)′(0)

= g′(0)× h′(0)× (g−1)′(0)× (h−1)′(0)
= 1,

where the last equality holds since the derivative of the inverse function on the corresponding
point is the inverse number.

We need the following well-known result [16] [13] [2].

Theorem 3.19. The group Diff(R)c is simple, where Diff(R)c is the group of smooth
orientation-preserving diffeomorphisms of R whose supports are compact.

Here, a support of a diffeomorphism means the closure of the set on which the given
diffeomorphisms is not equal to the identity map.

Corollary 3.20. Let Bc be the subgroup of B0 whose elements have supports not containing
θ = 0. Then Bc is simple.

Proof. There is a smooth diffeomorphism between R and S1 \ {0}, for example, the stere-
ographic projection. This diffeomorphism induces an isomorphism between Diff(R)c and
Bc.

The following is a result similar to the fact [K0,K0] = K1 which we have proved in
theorem 3.13.

Theorem 3.21. [B0, B0] is dense in B1.

Proof. By corollary 3.20, B0 has a simple subgroup Bc. The simplicity of Bc implies [B0, B0]
includes [Bc, Bc] = Bc, since any commutator subgroup is normal. Hence we can freely use
compactly supported diffeomorphisms.

Let g be an element of B1. By the observation above, there is an element h of [B0, B0]
such that g ◦ h has compact support around 0. In other words, we may assume that g has
a compact support around 0 and we only have to approximate g with elements in [B0, B0].

By the stereographic projection in corollary 3.20, we can consider g as a diffeomorphism
of R. It is well-known that dilations of R are mapped by this isomorphism to elements of
B0. Let δt be the dilation by t. For x ∈ R, it holds

δ−1
t ◦ g−1 ◦ δt(x) =

1
t
g−1(tx).
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By assumption g′(0) = 1. It easy to see that for t → 0 the functions 1
t g
−1(tx), its first

derivative and higher-order derivatives converge to x, 1 and 0 respectively, uniformly on
each compact set of R. This means 1

t g
−1(tx) approximates the identity map around x = 0.

Let ε be a positive number. Let γ be a smooth positive function on R such that it is 1 on
[−ε, ε] and 0 on x ≤ −2ε or x ≥ 2ε. And let us consider the following functions parametrized
by t.

ht(x) = x+
(

1
t
g−1(tx)− x

)
γ(x).

It is easy to see that ht’s are smooth, ht(0) = 0, ht’s are equal to x outside a compact set
and if t is sufficiently small then each of ht has the first derivative which is strictly larger
than 0. Hence we can consider ht as a diffeomorphism of R with a compact support. From
the observation above it is clear that ht and its derivatives converge to x, 1, and 0 uniformly
on R, namely ht converge to the identity element in the smooth topology.

An important fact is that ht is equal to 1
t g
−1(t·) on [−ε, ε]. The map δ−1

t ◦ g ◦ δt ◦ ht has
a compact support which does not contain 0, hence it corresponds to an element of Bc. We
denote it by ft.

Now it is evident that (g ◦δ−1
t ◦g−1 ◦δt)◦ft = g ◦ (δ−1

t ◦g−1 ◦δt ◦ft) is in [B0, B0] because
it is a product of a commutator and a diffeomorphism with compact support. It is equal to
g ◦ ht which converges to g with all its derivatives. This shows [B0, B0] is dense in B1.

Remark 3.22. The Lie group Diff(S1) is simple [16] [13] [2], but the Lie algebra Vect(S1)
is not simple. This is easy to see: for example, we only have to consider the subalgebra
of vector fields with compact supports in some fixed proper subinterval of S1. By the
commutation relation (4) this subalgebra is an ideal. This is closed in the smooth topology,
hence Vect(S1) is not even topologically simple.

On the other hand, the Witt algebra is simple. This can be seen by observing that the
linear map [L0, ·] is diagonalized on the standard basis of Witt with no degeneration and
that we can raise or lower the elements by commutating with Ln or L−n. From this it is
easy to see that any ideal containing nontrivial element must contain Witt.

4 The automorphism group of K
In this section we will completely determine the *-automorphism group of K, the unique
central extension of K0 defined in section 2. However, this group is not necessarily a natural
object. As we have seen in the introduction, the algebra K0 is a subalgebra of Vect(S1)0,
the Lie algebra of vector fields on S1 which vanish at θ = 0. On this algebra of vector
fields the stabilizer subgroup B0 of θ = 0 of Diff(S1) acts as automorphisms, but when we
restrict these actions to K0, it does not necessarily globally stabilize K0. In fact, the group
of *-automorphisms turns out to be very small. The situation is similar for the Virasoro
algebra [18].

We will study this problem only for the interest of representation theory. Many things are
known about the representation theory of Virasoro algebra. In particular, all the irreducible
unitary highest weight representations are completely classified [6]. But for the algebra
K the situation is different. Of course we can restrict any unitary representation of the
Virasoro algebra to K to obtain a unitary representation of K. But it is not known if there
are other unitary representations which are not localized at the point at infinity.
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On the other hand, if we make a composition of a (known) unitary representation with
an endomorphism of K then we obtain a (possibly new) unitary representation. The result
will show that this method is not productive and, in fact, all the representations obtained
by this method are already known.

The algebra K has a natural decomposition K = K+⊕K−⊕CC where K+ = span{Kn :
n ≥ 1}, K− = span{Kn : n ≤ −1}. Each of these direct summands is a subalgebra and it
holds K∗+ = K−.

Lemma 4.1. Let K and K ′ be elements of K. We expand them in the standard basis:

K = a0C + an1Kn1 + an2Kn2 + · · ·+ ank
Knk

,

K ′ = b0C + bm1Km1 + bm2Km2 + · · ·+ bml
Kml

.

We assume here that all ani and bmj but a0 and b0 are not zero and that n1 < n2 < · · · < nk
and m1 < m2 < · · · < ml. Suppose the expansion of [K,K ′] in the standard basis does
not contain terms Ki where i > max{nk,ml}. If we decompose K = K+ + K− + a0C and
K ′+ +K ′− + b0C according to the decomposition K = K+ ⊕K− ⊕CC, then K+ and K ′+ are
proportional.

Proof. We take a look of the commutation relations (1) of K. It is easy to see that in
[Km,Kn] the term with index higher than m and n appears if and only if m and n are
positive. And in such a case, the term Km+n appears if m 6= n.

We may assume nk and ml are positive, since otherwise the statement would be trivial.
From the observation above, we see that nk must be equal to ml. Otherwise, the term

Knk+ml
(which is larger than max{nk,ml}) appears in [K,K ′] and cannot be cancelled, but

this contradicts the assumption that there is no term with index higher than nk and ml in
the commutator.

Now K and K ′ have the following form:

K = an1Kn1 + an2Kn2 + · · ·+ ank−1
Knk−1

+ ank
Knk

,

K ′ = bm1Km1 + bm2Km2 + · · ·+ bml−1
Kml−1

+ bml
Knk

.

In the commutator [K,K ′], the terms with the highest indices are now Knk+nk−1
and

Knk+ml−1
which appear from the commutators of Knk

and Knk−1
or Kml−1

. If one of
nk−1 and ml−1 is still positive, then again by the assumption, the highest term in the com-
mutator must be cancelled. This implies that again nk−1 = ml−1 and ank

bml−1
= bml

ank−1
.

This means that the last two terms of K and K ′ are proportional.
Next steps go similarly: we know the last two terms are proportional and their commu-

tator vanishes. Again by considering the terms with highest indices which appear from the
commutator [K,K ′], we see also that the last three terms are proportional. Continuing this
procedure, we can see that all the positive part of K and K ′ must be proportional.

Note that with a completely analogous proof we can show a similar lemma for the
negative parts.

Lemma 4.2. If ρ is a *-endomorphism of K, then there is an element K of K+ and λ, µ, ν ∈
C such that ρ(K1) takes the form

ρ(K1) = λK + µK∗ + νC.
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Proof. Since ρ is a *-endomorphism, it holds that ρ(K−1) = ρ(K1)∗ and from (1)

[ρ(K1), ρ(K1)∗] = −ρ(K1)− ρ(K1)∗.

We can apply lemma 4.1 to see that the positive part of ρ(K1) is proportional to the
positive part of ρ(K1)∗. This is the statement of the lemma.

With an analogous argument we have the following:

Lemma 4.3. If ρ is a *-endomorphism of K, then there is an element K∗ of K+ and
λ′, µ′, ν ′ ∈ C such that ρ(K2) takes the form:

ρ(K2) = λ′K ′ + µ′K ′∗ + ν ′C.

By a direct calculation we see that the map τ defined by

τ(Kn) = −K−n, τ(C) = −C

is a *-automorphism of K (it extends also to the Virasoro algebra).
It is also immediate that C is the unique central element up to a scalar. This means

that any automorphism must map CC to CC.

Lemma 4.4. If ρ is a *-automorphism of K, then there are two possibilities.

1. There are elements K,K ′ of K+ and ν, ν ′ ∈ C such that ρ(K1) = K+νC and ρ(K2) =
K ′ + ν ′C.

2. There are elements K,K ′ of K− and ν, ν ′ ∈ C such that ρ(K1) = K+νC and ρ(K2) =
K ′ + ν ′C.

Proof. By lemma 4.2, ρ(K1) takes the form ρ(K1) = λK + µK + νC where K ∈ K+ and
λ, µ, ν ∈ C. By lemma 4.3 we have that ρ(K2) = λ′K ′ + µ′K ′∗ + ν ′. Let us recall that the
following commutation relation holds.

[ρ(K2), ρ(K1)∗] = 3ρ(K1)− 2ρ(K2)− ρ(K1)∗.

Note that ρ(K1)∗ = µK + λK∗ + νC.
By considering the composition with τ , we may assume that λ 6= 0 (λ = µ = 0 is

impossible because it would mean that K1 is mapped to a central element and ρ would not
be an automorphism). We show that µ = 0. If not, applying lemma 4.1 we see that K ′

must be proportional to K. But this is impossible because we would have

ρ(K1) = λK + µK∗ + νC,

ρ(K1)∗ = µK + λK∗ + νC,

ρ(K2) = λ′K + µ′K∗ + ν ′C,

ρ(K2)∗ = µ′K + λ′K∗ + ν ′C,

which are linearly dependent. The map ρ is an automorphism and this is a contradiction.
Similarly we have µ′ = 0 applying lemma 4.1 to the negative parts of ρ(K1)∗ and ρ(K2).
This concludes the lemma.
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Now we can determine all the elements of the *-automorphism group of K. Recall there
is a family Λ of *-automorphisms parametrized by λ ∈ R defined in proposition 2.6.

Theorem 4.5. If ρ is a *-automorphism of K, then ρ = Λ for some λ ∈ R or ρ = Λ ◦ τ .

Proof. By lemma 4.4 and possibly a composition with τ , we may assume that ρ(K1) =
K + νC and ρ(K2) = K ′ + ν ′C where K and K ′ are in K+.

Let us expand K and K ′ in the standard basis of K,

K =
N∑
i=1

aiKi,K
′ =

M∑
j=1

bjKj ,

and assume aN 6= 0 6= bM .
Since ρ is a *-automorphism, it must hold that

[ρ(K1), ρ(K1)∗] = −ρ(K1)− ρ(K1)∗, (5)

[ρ(K2), ρ(K2)∗] = −2ρ(K2)− 2ρ(K2)∗ +
C

2
, (6)

[ρ(K2), ρ(K1)∗] = 3ρ(K1)− 2ρ(K2)− ρ(K1)∗. (7)

Considering the terms KN in the first equation, we see that
∑N

i=1 ai = 1
N . Similarly,

considering the terms KM in the second equation, we obtain
∑M

j=1 bj = 2
M . On the other

hand, by comparing the terms K−N in the third equation, it turns out that −NaN
∑M

j=1 bj =
−aN . Since we have the assumption that aN is not zero, this implies that 2N = M .

The subalgebra K+ is generated by K1 and K2 with the recursive formula

Kn+1 =
1

n− 1
([Kn,K1] + nKn −K1) .

From this formula we see by induction that the term with the highest index of ρ(Kk) is
KkN . If N was larger than 1, these terms would not span all of K+ and ρ could not be
surjective. Thus N must be 1.

Again, by equation (5) and by a direct calculation, we obtain a1 = 1, namely:

ρ(K1) = K1 + ν1C,

where ν is a pure imaginary number. Similarly we have two solutions for equation (6):

ρ(K2) =
{
K2 + ν2C,
−1

3K1 + 4
3K2 + ν2C.

The second solution does not satisfy equation (7). Then again by (7) we see 2ν1 = ν2.
We have seen in proposition 2.6 that this ρ can surely be extended to a *-automorphism

of K. Since K1 and K2 are the generators of K as a *-Lie algebra, this determines ρ
uniquely.

Corollary 4.6. Aut(K) ∼= R o Z2.

Remark 4.7. It is also possible to determine the automorphism group of the Virasoro algebra
[18]: it is generated by the extension of τ and one-parameter subgroup of rotation:

ρt(Ln) = eitnLn,

ρt(C) = C.

It is again isomorphic to R o Z2, but the action of the R part is different.
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5 Generalized Verma modules

As we have seen in section 2, K0 has the unique (up to isomorphism) central extension which
is a subalgebra of Vir. We denote it by K. This section is an attempt to construct a family
of unitary representations of K.

We are going to construct modules Vh+ih′,c,λ parametrized by three complex numbers
h+ ih′, c, λ, where h, h′ ∈ R and c, λ ∈ C. Every module has a “lowest weight vector” which
satisfies Knv = (h+ ih′+ nλ)v for n ≥ 1 and Cv = cv. If we restrict to the case λ = 0, this
module reduces to the restriction of the Virasoro module to K.

Recall that K is a *-Lie algebra. A sesquilinear form 〈·, ·〉 on a module V is said to be
contravariant if for any v, w ∈ V and x ∈ K it holds 〈xv,w〉 = 〈v, x∗w〉. In addition if this
sesquilinear form is positive definite, then the representation of K on V is said to be unitary.

It turns out that for any set of values of h, h′, c, λ we can construct a corresponding
module. In addition, if c is real, there exists a contravariant sesquilinear form on the
module. Then we arrive at natural problems, for example, when the contravariant form is
unitary, when the representation of K integrates to the (projective unitary) representation of
B0 and when these representations are inequivalent, etc. These problems will be addressed
in further publications of the author.

Here we make some remarks. It is easy to see that these modules are inequivalent as
representations of the Lie algebra K, however, as we saw in the remark 2.8 (after proposition
2.7), the imaginary part of λ does not make difference for the corresponding projective
representation of the group B0. In addition, in [17] it has been proved that there are modules
which integrate to equivalent projective representations of the group for some different
values of h. Furthermore, as we will see in section 7, there exist true (non projective)
representation of B0 whose naturally corresponding representations of K are not lowest
weight modules. In the case of Diff(S1) there is a one-to-one correspondence between
irreducible unitary positive energy projective representations of the group and irreducible
lowest weight unitary representations of the Virasoro algebra. But for B0 and K we cannot
expect such a correspondence.

5.1 General construction of modules

We start with general notions. Let L0 be a Lie algebra, U(L0) the universal enveloping
algebra of L0, ψ0 a nontrivial linear functional on L0 which vanishes on the commutator
subalgebra [L0,L0]. In particular, we assume that L0 is not semisimple (otherwise ψ0 would
be trivial). Later L0 will be a upper-triangular subalgebra of a Lie algebra.

Lemma 5.1. The linear functional ψ0 extends to a homomorphism of the universal algebra
U(L0).

Proof. Clearly ψ0 extends to a homomorphism of the tensor algebra of L0. Now we only have
to recall that U(L0) is the quotient algebra by the two-sided ideal generated by elements of
the form a⊗b−b⊗a− [a, b] where a, b ∈ L0. By assumption, ψ0 vanishes on these elements,
hence on the ideal generated by them. This implies ψ0 is well-defined on U(L0).

Lemma 5.2. Let J0 be the left ideal of U(L0) (the subspace invariant under the multipli-
cation from the left) generated by elements of the form ψ0(a)− a for a ∈ L0.

Then U(L0)/J0 is nontrivial if and only if ψ0 vanishes on [L0,L0]. In this case J0 =
kerψ0 and the quotient space is one-dimensional.
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Proof. If ψ0 vanishes on [L0,L0], then by lemma 5.1 ψ0 extends to U(L0) and J0 is included
in kerψ0. Since ψ0 is nontrivial, kerψ0 is nontrivial.

On the other hand, if ψ0 doesn’t vanish at [L0,L0], then take x, y ∈ L0 such that
ψ0([x, y]) 6= 0. Then it holds that

[(ψ0(x)− x) , (ψ0(y)− y)] = [x, y] ∈ J0,

ψ0([x, y])− [x, y] ∈ J0.

Hence J0 contains a nontrivial scalar and generates all.
To complete the proof, we only have to show that J0 ⊃ kerψ0 since the other inclusion

has been done. Therefore it is enough to show that J0 has codimension 1 in U(L0). This
is a rephrasing of the claim that any element of U(L0) is equivalent to a scalar modulo J0.
This is easy to see since any element of U(L0) is a linear combination of tensor products
a1 ⊗ a2 ⊗ · · · ⊗ an. By definition there is an element a1 ⊗ a2 ⊗ · · · ⊗ (an − ψ0(an)) in J0,
therefore a1⊗ a2⊗ · · · ⊗ an ≡J0 a1⊗ a2⊗ · · · ⊗ψ0(an). By repeating this procedure, we see
that every element of U(L0) is equivalent to a scalar.

In the following we assume that L is a *-Lie algebra with a decomposition into Lie
subalgebras L = N− ⊕H⊕N+, where (N+)∗ = N−, (H)∗ = H, and H is commutative.

Let ψ be a linear functional on H ⊕N+ which vanishes on its commutator subalgebra.
In other words, ψ is an element of H1(N+ ⊕ H,C). We will show that for any such ψ we
have a left module on L. Again let U(L) be the universal enveloping algebra of L. It is
naturally a left module on L.

Proposition 5.3. Let J be the left ideal of U(L) generated by elements of the form ψ(l+)−
l+, where l+ ∈ H ⊕N+. The subspace J is a nontrivial submodule on U(L).

Proof. By the theorem of Poincarè-Birkhoff-Witt, it holds that U(L) = U(N−) ⊗ U(H) ⊗
U(N+). By lemma 5.2, kerψ has codimension one in U(H)⊗ U(N+). It is easy to see that
J takes the form U(N−)⊗ kerψ, hence it is nontrivial.

For a fixed ψ we define the quotient module V = U(L)/J . Since U(H)⊕ U(N+)/ kerψ
is one dimensional, the module V is linearly isomorphic to U(N−) and we identify them.
There is a specified vector v which corresponds to 1 ∈ C ⊂ U(N−) and, on v, an element x
of H⊗N+ acts as xv = ψ(x)v.

Example 1. The Virasoro algebra has the following decomposition:

Vir = V− ⊕H⊕ V+,

where V+ = span{Ln : n > 0} and H = span{L0, C}. It is easy to see that the commutator
subalgebra [H ⊕ V+,H ⊕ V+] is equal to V+. According to proposition 5.3, we obtain a
module of Vir for any linear functional ψ on H⊕V+ vanishing on V+. The linear functional
ψ is determined by the two values c := ψ(C) and h := ψ(L0). It is well known that for some
values of c and h we can define inner products on these modules and these representations
integrate to representations of the group Diff(S1) [4].

Example 2. The *-Lie algebra K has the decomposition

K = K+ ⊕H⊕K−,
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where K+ = span{Kn : n > 0} and H = span{C}. It can be shown that H1(K+ ⊕H,C) is
three dimensional and an element ψ in H1(K+ ⊕H,C) takes the form

ψ(C) = c, ψ(Kn) = h+ ih′ + λn where c, λ ∈ C, h, h′,∈ R.

We denote this module on K by Vh+ih′,c,λ. If c ∈ C, ψ(Kn) = h+ ih′ ∈ C and λ = 0 then the
modules Vh+ih′,c,0 reduce to Verma modules on the Virasoro algebra (see proposition 5.7).

Let us return to general cases. From now on we assume that ψ is self-adjoint on H
(namely, ψ(h∗) = ψ(h) for h ∈ H). Recall that V is the quotient module U(L)/J as in the
remark after proposition 5.3. Our next task is to define a contravariant sesquilinear form
on V . Note that the *-operation extends naturally to U(L).

We define a sesquilinear map on V × V ( = U(N+)× U(N+)) into U(L) by

α(L−1 , L
−
2 ) = (L−2 )∗ ⊗ L−1 , for L−1 , L

−
2 ∈ U(N−) = V.

On the other hand, we can define a linear form β on U(L) using the decomposition
U(N−)⊗ U(H)⊗ U(N+), by

β(L− ⊗H ⊗ L+) = ψ ((L−)∗)ψ(H)ψ(L+).

It is easy to see that β is self-adjoint since ψ is self-adjoint on H.

Theorem 5.4. β ◦ α := γ is contravariant.

Proof. We have to show that for any L ∈ L it holds

γ(L⊗ L−1 , L
−
2 ) = γ(L−1 , L

∗ ⊗ L−2 ).

As elements of U(L), we have the following decompositions by the Poincarè-Birkhoff-
Witt theorem:

L⊗ L−1 =
∑
k

L−k ⊗Hk ⊗ L+
k

(L−2 )∗ ⊗ L−k =
∑
l

L−k,l ⊗Hk,l ⊗ L+
k,l (8)

Hk ⊗ L+
k ⊗Hk,l ⊗ L+

k,l =
∑
m

Hk,l,m ⊗ L+
k,l,m,

where elements in the decompositions are L−k , L
−
k,l ∈ U(N−), Hk, Hk,l, Hk,l,m ∈ U(H) and

L+
k , L

+
k,l, L

+
k,l,m ∈ U(N+).

Now we calculate

γ(L⊗ L−1 , L
−
2 ) = γ

(∑
k

L−k ψ(Hk ⊗ L+
k ), L−2

)
=

∑
k

ψ(Hk ⊗ L+
k )β

(
(L−2 )∗ ⊗ L−k

)
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By substituting the expression in (8) to (L−2 )∗ ⊗ L−k , we have

γ(L⊗ L−1 , L
−
2 ) =

∑
k,l

ψ(Hk ⊗ L+
k )ψ

(
(L−k,l)

∗
)
ψ(Hk,l ⊗ L+

k,l)

=
∑
k,l

ψ
(

(L−k,l)
∗
)
ψ(Hk,l ⊗ L+

k,l ⊗Hk ⊗ L+
k )

By substituting the expression in (8) to Hk ⊗ L+
k ⊗Hk,l ⊗ L+

k,l,

γ(L⊗ L−1 , L
−
2 ) =

∑
k,l,m

ψ
(

(L−k,l)
∗
)
ψ(Hk,l,m ⊗ L+

k,l,m)

= β

∑
k,l,m

L−k,l ⊗Hk,l,m ⊗ L+
k,l,m


= β

∑
k,l

L−k,l ⊗Hk,l ⊗ L+
k,l ⊗Hk ⊗ L+

k


= β

(∑
k

(L−2 )∗ ⊗ L−k ⊗Hk ⊗ L+
k

)
= β

(
(L−2 )∗ ⊗ L⊗ L−1

)
.

Similarly, in order to see β
(
(L−2 )∗ ⊗ L⊗ L−1

)
= γ(L−1 , (L)∗ ⊗ L−2 ) we need the following

decompositions (we use same notations to save number of letters.).

L∗ ⊗ L−2 =
∑
k

L−k ⊗Hk ⊗ L+
k

(L−k )∗ ⊗ L−1 =
∑
l

L−k,l ⊗Hk,l ⊗ L+
k,l

(L−k,l)
∗ ⊗Hk ⊗ L+

k =
∑
m

Hk,l,m ⊗ L+
k,l,m,

where elements in the decompositions are L−k , L
−
k,l ∈ U(N−), Hk, Hk,l, Hk,l,m ∈ U(H) and

L+
k , L

+
k,l, L

+
k,l,m ∈ U(N+). Now the final computation goes as follows.

γ(L−1 , L
∗ ⊗ L−2 ) = γ

(
L−1 ,

∑
k

L−k ⊗Hk ⊗ L+
k

)
=

∑
k

ψ(Hk ⊗ L+
k )β

(
(L−k )∗ ⊗ L−1

)
=

∑
k,l

ψ(Hk)ψ(L+
k )ψ

(
(L−k,l)

∗
)
ψ(Hk,l)ψ(L+

k,l)

=
∑
k,l

ψ
(

(L−k,l)
∗ ⊗Hk ⊗ L+

k

)
ψ(Hk,l)ψ(L+

k,l)

=
∑
k,l,m

ψ(Hk,l,m)ψ(L+
k,l,m)ψ(Hk,l)ψ(L+

k,l).
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In the next step (and only here) we need the self-adjointness of ψ on H. Continuing,

γ(L−1 , L
∗ ⊗ L−2 ) =

∑
k,l,m

ψ ((Hk,l,m)∗)ψ(L+
k,l,m)ψ(Hk,l)ψ(L+

k,l)

= β

∑
k,l,m

(L+
k,l,m)∗ ⊗ (Hk,l,m)∗ ⊗Hk,l ⊗ L+

k,l


= β

∑
k,l

(L+
k )∗ ⊗ (Hk)∗ ⊗ L−k,l ⊗Hk,l ⊗ L+

k,l


= β

(∑
k

(L+
k )∗ ⊗ (Hk)∗ ⊗ (L−k )∗ ⊗ L−1

)
= β

(
(L−2 )∗ ⊗ L⊗ L−1

)
.

This completes the proof.

In the case of Vir, c = ψ(C) and h = ψ(L0) must be real for the sesquilinear form to
be defined. For such ψ it has been completely determined when the sesquilinear forms are
positive definite thanks to the Kac determinant formula [6].

In the case ofK, the only condition for the existence of sesquilinear form is that ψ(C) ∈ R.
Hence there are additional parameters h′ ∈ R, λ ∈ C for generalized Verma modules Vh+ih′,c,λ
on K.

5.2 Irreducibility of generalized Verma modules on K

In this section, we completely determine for which values of h + ih′, c, λ the corresponding
generalized Verma modules on K are irreducible. The proof heavily relies on the result of
Feigin and Fuks [3] which has determined when the Verma modules on the Virasoro algebra
are irreducible. To utilize their result, we extend the generalized Verma modules on K to
(non-unitary) representations of the Virasoro algebra.

Let Vh+ih′,c,λ be a generalized Verma module on K and v be the corresponding lowest
weight vector such that

Knv = (h+ ih′ + nλ)v for n ≥ 1 and Cv = cv. (9)

First we observe that
Kn 7→ Kn − nλI,C 7→ C,

where I is the identity operator on Vh+ih′,c,λ, extends by linearity to a well-defined (non
*-) representation (on the same space Vh+ih′+nλ) of K (the proof is the same as that of
proposition 2.6). On the other hand, it is straightforward to see that this new representation
is equivalent to Vh+ih′,c,0. Irreducibility of a representation of an algebra is not changed
even if we add the identity operator to the set of operators. Therefore the irreducibility
of Vh+ih′,c,λ is equivalent to that of Vh+ih′,c,0 and we may restrict the consideration to the
latter case. We denote it Vh+ih′,c.

Lemma 5.5. For any w ∈ Vh+ih′,c there is N ∈ N such that Kmw = Knw for m,n ≥ N .
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Proof. The module Vh+ih′,c is spanned by vectors Kn1 · · ·Knk
v. We will show the lemma by

induction with respect to k. If w = v, the lowest weight vector, then the lemma obviously
holds with N = 1, hence the case k = 0 is done.

Assume that the lemma holds for w and put limmKmw = w′ (here lim has nothing to
do with any topology, but simply means that “the equality holds for sufficiently large m”).
We will show that it also holds for Knw. Let us calculate

KmKnw = ([Km,Kn] +KnKm)w
= ((m− n)Km+n −mKm + nKn +KnKm)w,

and for sufficiently large m this is equal to

(m− n)w′ −mw′ + nKnw +Knw
′ = −nw′ + nKnw +Knw

′.

and this does not depends on m.

Let us define Dw = limmKmw. Then, it is clear that D is a linear operator on Vh+ih′,c
and it holds Dv = (h+ ih′)v.

Lemma 5.6. The following commutation relation holds:

[D,Kn] = n(Kn −D). (10)

Proof. We only need to calculate

(DKn −KnD)w = lim
m

(KmKn −KnKm)w

= lim
m

((m− n)Km+n −mKm + nKn)w

= n(Kn −D)w.

The relation (10) can be rewritten as [Kn −D,−D] = n(Kn −D).

Proposition 5.7. The representation of K on Vh+ih′,c,0 extends to a representation of Vir.
This extension is the Verma module with −h− ih′, c.

Proof. We take a correspondence L0 7→ −D,Ln 7→ Kn −D,C 7→ C. Now that we know all
the commutation relations between D and Kn, the confirmation that this correspondence is
a representation is straightforward.

It is clear that the lowest weight vector is v and−Dv = (−h−ih′)v, (Kn−D)v = 0 for n ≥
0, Cv = cv. We only have to show that all the vectors of the form (Kn1−D) · · · (Knk

−D)v,
where n1 ≤ · · · ≤ nk, are linearly independent. But this is clear from the fact that these
vectors are eigenvectors of D and the fact that {Kn1 · · ·Knk

v} are independent by definition.
The former fact is shown by a straightforward induction.

Here we remark that this extension of the representation does not change the irreducibil-
ity. If the module on K is irreducible, then clearly it is irreducible as a module on Vir. On
the other hand the operator D above is defined as the limit of Kn’s, hence if the module on
K is reducible then it is still reducible as a module on Vir.

The following theorem is due to Feigin and Fuks [3].

27



Theorem 5.8. For h, c ∈ C, the Verma module Vh,c on the Virasoro algebra is reducible if
and only if there are natural numbers α, β such that

Φα,β(h, c) :=
(
h+

1
24

(α2 − 1)(c− 13) +
1
2

(αβ − 1)
)

×
(
h+

1
24

(β2 − 1)(c− 13) +
1
2

(αβ − 1)
)

+
(α2 − β2)2

16
= 0.

The application of this to our case is now straightforward.

Corollary 5.9. For h, h′ ∈ R, c, λ ∈ C, the generalized Verma module Vh+ih′,c,λ on K is
reducible if and only if there are natural numbers α, β such that

Φα,β(−h− ih′, c) = 0.

6 Endomorphisms of K
This section is devoted to the study of *-endomorphisms of the algebra K. As in the case
of automorphisms, endomorphisms of K are not natural objects, but they are interesting
from the viewpoint of representations. We remarked before that any composition of a *-
endomorphism and unitary representation provides a unitary representation. In this way,
we obtain a strange kind of representations of K. We will also have a rough classification of
endomorphisms.

It is well known (for example, see [12][17]) that the following maps are endomorphisms
of the Virasoro algebra and they restrict to K:

δr(LN ) =
1
r
Lrn +

C

24

(
r − 1

r

)
,

δr(C) = rC,

for any integer r ∈ Z.
We have another type of *-endomorphisms of K parametrized by a complex number

α. In the next section we will see that these endomorphisms are related to some unitary
representation of Diff(S1)0.

Proposition 6.1. Let α ∈ C and K be an element of K which satisfies [K,K∗] = −K−K∗.
Define

σα(Kn) =
(
n2 + n

2
α+

n2 − n
2

α− n2 − n
2

)
K

+
(
n2 + n

2
α+

n2 − n
2

α− n2 + n

2

)
K∗,

σα(C) = 0.

Then σα extends to a *-endomorphism of K by linearity.
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Remark 6.2. Examples of K in this proposition are K = K1,−K−1,−1
6K2 + 2

3K1. Since the
image of C is 0, σα extends also to a *-homomorphism of K0 into K. Therefore, the kernel
of σα is the direct sum of kerσα as a homomorphism of K0 and CC.

Proof. It is clear that σα preserves the *-operation. We only have to confirm that it preserves
commutation relations and this is done by straightforward calculations. However, we will
exhibit a clearer procedure.

Let us put β = 3α+ α− 1. The definition of σα can be rewritten as

σα(Kn) =
(
n2 − n

2
β − (n2 − 2n)α

)
K

+
(
n2 − n

2
β − (n2 − 2n)α− n

)
K∗.

If we put γn = n2−n
2 β − (n2 − 2n)α, this takes the form σα(Kn) = γnK + (γn − n)K∗. Now

it is easy to see that

[σα(Kn), σα(K−n)] = [γnK + (γn − n)K∗, (γn − n)K + γnK
∗]

= (−|γn|2 + |γn − n|2)(K +K∗)
= −n(2Reγn − n)(K +K∗)
= −n (σα(Kn) + σα(K−n)) .

Next we calculate a general commutator, for m 6= −n,

[σα(Km), σα(Kn)]

=
(
m

(
n2 − n

2
β − (n2 − 2n)α− n

)
− n

(
m2 −m

2
β − (m2 − 2m)α−m

))
×(K +K∗)

=
(
β

2
− α

)
(m2n−mn2)(K +K∗)

On the other hand,

(m− n)σα(Km+n)−mσα(Km) + nσα(Kn)
=

(
(m− n)γm+n −mγm + nγn − (m− n)(m+ n) +m2 − n2

)
×(K +K∗)

=
(
β

2
− α

)
(m2n−mn2)(K +K∗)

and this completes the proof.

Proposition 6.3. Let us assume that K +K∗ 6= 0. If α ∈ 1
2 + iR, then ker(σα) is K1⊕CC

(see section 3.1). Otherwise, ker(σα) is K2 ⊕ CC.

Proof. As we have noted in the remark 6.2, first we think σα as a homomorphism of K0.
By direct calculations, we have (see section 3.2),

ρ(M0
n) = (−(n+ 1)α− nα+ n)K + (−(n+ 1)α− nα+ n+ 1)K∗,

ρ(M1
n) = (α+ α− 1)(K +K∗),

ρ(M2
n) = 0.
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The kernel of σα must be one of ideals in theorem 3.16. From this it is clear that ker(σα)
contains K2 and contains K1 if and only if Reα = 1

2 .
By the remark 6.2, the kernel of σα as a *-endomorphism is K1 ⊕ CC or K2 ⊕ CC,

respectively.

We have a partial classification of endomorphisms of K.

Proposition 6.4. If ρ is a nontrivial *-endomorphism of K, then the possibilities are:

1. ρ = σα with appropriate K and α ∈ 1
2 + iR. In this case, ker(ρ) = K1 ⊕ CC and

ρ(K1) = αK + (α− 1)K∗.

2. ρ = σα with appropriate K and α /∈ 1
2 + iR. In this case, ker(ρ) = K2 ⊕ CC and

ρ(K1) = αK + (α− 1)K∗.

3. ρ(K1) =
∑N

i=1 aiKi + a0C ∈ K+ ⊕ CC, ρ(K2) =
∑2N

i=1 biKi + b0C ∈ K+ ⊕ CC, where∑N
i=1 ai =

∑2N
i=1 bi = 1

N . In this case, ker(ρ) = {0}.

4. ρ(K1) =
∑−1

i=−N aiKi + a0C ∈ K− ⊕ CC, ρ(K2) =
∑−1

i=2N biKi + b0C ∈ K+ ⊕ CC,
where

∑−1
i=N ai =

∑−1
i=2N bi = − 1

N . In this case, ker(ρ) = {0}.

5. ρ(Kn) = inλC for some λ ∈ R.

Proof. By lemma 4.2 and 4.3, it takes the form ρ(K1) = λK + µK∗ + νC, ρ(K2) = λ′K ′ +
µ′K ′∗+ν ′C, where K and K ′ are elements of K+. Also by lemma 4.1 with the commutation
relation of K2 and K−1, K and K ′∗ must be proportional.

If both of λ and µ are nonzero, then also K and K ′ must be proportional. By the
commutation relation of K1 and K−1 we see that some scalar multiple of K plus a central
element (we call it temporarily K̃) satisfies [K̃, K̃∗] = −K̃ − K̃∗. Hence from the beginning
we may assume [K,K∗] = −K −K∗+κC for some κ ∈ C. Then again by the commutation
relation, µ = λ− 1. Similarly, it holds µ′ = λ′ − 2. By the commutation relation of K2 and
K−1 we see λ′ = 3λ + λ − 1. Then this is exactly the case (1) or (2). It depends on the
value of λ whether it is (1) or (2).

Let one of λ and µ be zero. By composing an automorphism τ , we may assume µ = 0
and we will show that we have the case (3). By the same argument of the beginning of
theorem 4.5, ρ(K1) takes the form ρ(K1) =

∑N
i=1 aiKi+a0C, ρ(K2) =

∑2N
j=1 bjKj +b0C and∑N

i=1 ai = 1
N =

∑2N
i=1 bi. Any finite set of ρ(Ki)’s is linearly independent (by considering

the highest or lowest terms of ρ(Ki) in the standard basis of K) and we see ker(ρ) = {0}.
If λ = µ = 0, by the commutation relations (1), ρ(K2) must be mapped to a central

element. By the same argument as that of Lemma 2.1, ρ is of the form ρ(Kn) = inλC.

Let p be the Lie algebra of the group generated by translations and dilations in Diff(S1).
This algebra has a basis {T,D} with the relation [D,T ] = T [11][9]. Its complexification
(which we denote again p) is a *-Lie algebra with the *-operation D∗ = −D,T ∗ = −T . By
setting K = −D + iT , we have [K,K∗] = −K −K∗.

Lemma 6.5. Any unitary representation ϕ′ of p produces a representation ϕ′1 of K0 (or a
representation of K with the central charge c = 0).
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Proof. It suffices to set

ϕ′1(Kn) =
n2 + n

2
ϕ′(K) +

n2 − n
2

ϕ′(K∗).

We see that ϕ′1 preserves the commutation relations by the same computations in the proof
of proposition 6.1 with α = 1.

Remark 6.6. Any composition of a *-endomorphism and a unitary representation of K is
again a unitary representation. As we shall see in the next section, a composition of an
endomorphism of type (1) or (2) in proposition 6.4 and a lowest weight representation
gives rise to a strange representation (in the sense that they are “localized at the point at
infinity”). On the other hand, a composition of the type (3) endomorphism and a lowest
weight representation contains at least one lowest weight vector in the sense of subsection
5.2, equation (9) which is the lowest weight vector of the original representation, and the
value of h+ ih′ is changed to 1

N (h+ ih′). If we start with the restriction to K of a unitary
representation of Vir, representations with “complex energy” (namely, h′ 6= 0) do not arise
in this way.

7 Some unitary representations of B0

In this section we will construct true (not projective) unitary representations of B0. Sym-
metries in physics are in general described by unitary projective representations of a group
[15]. From this point of view, one dimensional true representations are trivial, since they
are equivalent to the trivial representations as projective representations. Nevertheless, we
here exhibit a construction of a one dimensional representation. The author believes that
this reveals the big difference between Diff(S1) and B0. In fact, Diff(S1) does not admit
any positive energy true representation (see [15]). This difference comes mainly from the
fact that Diff(S1) is simple but B0 is not simple.

We identify B0 with a space of functions on R as in section 3.5.

Proposition 7.1. For any λ ∈ R the map

ϕ : B0 → S1

f 7→ exp(iλ log f ′(0))

is a (one-dimensional) unitary representation of B0.

Proof. Recall that B0 is the group of orientation preserving, 0-stabilizing diffeomorphisms of
S1. By the identification with the function space, the derivative of any element is everywhere
(in particular at θ = 0) positive, hence the map is properly defined.

By the formula
(f ◦ g)′(0) = f ′(0) · g′(0),

we see the map ϕ above is multiplicative.

Remark 7.2. This ϕ is obviously irreducible and does not extend to Diff(S1). In fact, ϕ is
the integration of the one-dimensional representation of corollary 2.3. If g ∈ B0 is localized
on some closed interval which does not include 0, then ϕ(g) = 1. In this sense, ϕ is “localized
at the point at infinity”.
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Next we need a general lemma.

Lemma 7.3. Let G be a group, H a normal subgroup of G and π the quotient map G →
G/H. Let F be a subgroup of G such that F ∩H = {e} and π(F ) = G/H. Then G/H and F
are isomorphic by a canonical isomorphism γ such that γ ◦π|F = id. If ϕ is a representation
of F , it extends to a representation ϕ̃ := ϕ ◦ γ ◦ π of G.

Let B2 = {g ∈ B0 : f ′(0) = 1, f ′′(0) = 0}. It is easy to see that B2 is a normal subgroup
of B0.

Let G = B0, H = B2 and F = P be the subgroup generated by dilations and translations.
It is obvious that any element of F can be written as a product of a dilation and a translation.
The derivative of a translation at point 0 is always 1, whereas a nontrivial dilation has
the derivative different from 1 at 0. From this, the intersection of F and H must be
pure translations. But then, any element of this intersection must have a vanishing second
derivative at 0. This implies that the intersection is trivial.

By a similar consideration, it is not difficult to see that π(P ) = π(B0). By the previous
lemma, the unitary irreducible representation of F = P extends to a unitary irreducible
representation of B0 having B2 in the kernel.

Also this representation is “localized at the point at infinity”, since if a diffeomorphism
is localized in a closed interval which does not contain 0, then it is an element of B2 and
hence mapped to the identity operator.

Summing up, we have the following.

Theorem 7.4. Any unitary representation ϕ of P canonically extends to a representation
ϕ̃ of B0 which is localized at the point at infinity.

We describe the relation between this representation and the endomorphism of K con-
structed in section 6. The group P admits a unique irreducible positive energy (which means
that the generator of translation is positive) true (not projective) representation [11]. This
representation can be considered as the integration of several lowest weight representations
of the Lie algebra p of P. In the following, we fix such a representation of p and extend it
to K. The representation space of p is a dense subspace of the representation space of P
and it is the core of any generator of one-parameter subgroup of P (see [11]). Through ϕ̃,
any one-parameter subgroup gt of B0 is first mapped to P by γ ◦ π and then represented
as a one-parameter group of unitary operators. Hence any unbounded operator appearing
here is in the representation of p explained above and there arise no problems of domains
or self-adjointness.

Proposition 7.5. Let ϕ be a unitary representation of the Lie group P , ϕ′ be the corre-
sponding representation of the Lie algebra p and ϕ′1 be the extension to K in proposition 6.5,
then ϕ′1 integrates to ϕ̃ in the theorem 7.4.

Proof. The quotient group B0/B2 is isomorphic to R+ o R with the group operation:

(X1, X2) · (Y1, Y2) = (X1Y1, X1Y2 + Y 2
1 X2), for X1, Y1 ∈ R+, X2, Y2 ∈ R.

The isomorphism ρ is given by f 7→ (f ′(0), f ′′(0)).
It’s Lie algebra has the structure R⊕ R with

[(x1, x2), (y1, y2)] = (0, x2y1 − x1y2)] for x1, x2, y1, y2 ∈ R.
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If gs is a one-parameter subgroup in B0 with generator v, then the corresponding element
in the algebra is ρ′(v) = (v′(0), v′′(0)), where ρ′ is the derivative of ρ.

The generator of the one-parameter subgroup of dilations Ds(θ) is 1
2(K1 − K∗1 )(θ) =:

d1(θ) = sin θ and the generator of translations Ts(θ) is − i
2(K1 + K∗1 ) =: t1(θ) = 1 − cos θ.

Thus ρ′(d1) = (1, 0) and ρ′(t1) = (0, 1). Similarly, the generator 1
2(Kn −K∗n)(θ) =: dn(θ) =

sinnθ is mapped to (n, 0) and − i
2(Kn +K∗n) =: tn(θ) = 1− cosnθ is mapped to (0, n2). In

short, it holds that ρ′(dn) = nρ′(d1), ρ′(tn) = n2ρ′(t1). Hence these relations hold also for
the derivative of ϕ̃, namely ϕ̃′(dn) = nϕ̃′(d1), ϕ̃′(tn) = n2ϕ̃′(t1).

On the other hand, for ϕ′1 we have

ϕ′1

(
1
2

(K1 −K∗1 )
)

=
1
2

(K −K∗),

ϕ′1

(
− i

2
(K1 +K∗1 )

)
= − i

2
(K +K∗),

ϕ′1

(
1
2

(Kn −K∗n)
)

=
n

2
(K −K∗) = nϕ′1

(
1
2

(K1 −K∗1 )
)
,

ϕ′1

(
− i

2
(Kn +K∗n)

)
= − in

2

2
(K +K∗) = n2ϕ′1

(
− i

2
(K1 +K∗1 )

)
.

From this it is clear that ϕ′1 and ϕ̃′ are equivalent, since by definition ϕ1(d1) = ϕ̃′(d1) and
ϕ1(t1) = ϕ̃′(t1)

As remarked before, there is a unique irreducible positive energy representation of P .
By the proposition above, it extends to an irreducible positive energy true representation of
B0.
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