45,931 research outputs found
A Generalization of Mathieu Subspaces to Modules of Associative Algebras
We first propose a generalization of the notion of Mathieu subspaces of
associative algebras , which was introduced recently in [Z4] and
[Z6], to -modules . The newly introduced notion in a
certain sense also generalizes the notion of submodules. Related with this new
notion, we also introduce the sets and of stable elements
and quasi-stable elements, respectively, for all -subspaces of -modules , where is the base ring of . We then
prove some general properties of the sets and .
Furthermore, examples from certain modules of the quasi-stable algebras [Z6],
matrix algebras over fields and polynomial algebras are also studied.Comment: A new case has been added; some mistakes and misprints have been
corrected. Latex, 31 page
Loss of mass and stability of galaxies in MOND
The self-binding energy and stability of a galaxy in MOND-based gravity are
curiously decreasing functions of its center of mass acceleration towards
neighbouring mass concentrations. A tentative indication of this breaking of
the Strong Equivalence Principle in field galaxies is the RAVE-observed escape
speed in the Milky Way. Another consequence is that satellites of field
galaxies will move on nearly Keplerian orbits at large radii (100 - 500 kpc),
with a declining speed below the asymptotically constant naive MOND prediction.
But consequences of an environment-sensitive gravity are even more severe in
clusters, where member galaxies accelerate fast: no more Dark-Halo-like
potential is present to support galaxies, meaning that extended axisymmetric
disks of gas and stars are likely unstable. These predicted reappearance of
asymptotic Keplerian velocity curves and disappearance of "stereotypic
galaxies" in clusters are falsifiable with targeted surveys.Comment: 4 pages, 2 figures, ApJ Letter
AC electrokinetic phenomena over semiconductive surfaces: effective electric boundary conditions and their applications
Electrokinetic boundary conditions are derived for AC electrokinetic (ACEK)
phenomena over leaky dielectric (i.e., semiconducting) surfaces. Such boundary
conditions correlate the electric potentials across the
semiconductor-electrolyte interface (consisting of the electric double layer
(EDL) inside the electrolyte solutions and the space charge layer (SCL) inside
the semiconductors) under AC electric fields with arbitrary wave forms. The
present electrokinetic boundary conditions allow for evaluation of induced zeta
potential contributed by both bond charges (due to electric polarization) and
free charges (due to electric conduction) from the leaky dielectric materials.
Subsequently, we demonstrate the applications of these boundary conditions in
analyzing the ACEK phenomena around a semiconducting cylinder. It is concluded
that the flow circulations exist around the semiconducting cylinder and are
shown to be stronger under an AC field with lower frequency and around a
cylinder with higher conductivity.Comment: 29 pages, 4 figure
Theory of quasi-one dimensional imbalanced Fermi gases
We present a theory for a lattice array of weakly coupled one-dimensional
ultracold attractive Fermi gases (1D `tubes') with spin imbalance, where strong
intratube quantum fluctuations invalidate mean field theory. We first construct
an effective field theory, which treats spin-charge mixing exactly, based on
the Bethe ansatz solution of the 1D single tube problem. We show that the 1D
Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state is a two-component Luttinger
liquid, and its elementary excitations are fractional states carrying both
charge and spin. We analyze the instability of the 1D FFLO state against
inter-tube tunneling by renormalization group analysis, and find that it flows
into either a polarized Fermi liquid or a FFLO superfluid, depending on the
magnitude of interaction strength and spin imbalance. We obtain the phase
diagram of the quasi-1D system and further determine the scaling of the
superfluid transition temperature with intertube coupling.Comment: new expanded version, 8 pages, updated reference
Effect of nanostructuration on compressibility of cubic BN
Compressibility of high-purity nanostructured cBN has been studied under
quasi-hydrostatic conditions at 300 K up to 35 GPa using diamond anvil cell and
angle-dispersive synchrotron X-ray powder diffraction. A data fit to the Vinet
equation of state yields the values of the bulk modulus B0 of 375(4) GPa with
its first pressure derivative B0' of 2.3(3). The nanometer grain size (\sim20
nm) results in decrease of the bulk modulus by ~9%
Structure and magnetism of Cr2BP3O12: Towards the quantum-classical crossover in a spin-3/2 alternating chain
Magnetic properties of the spin-3/2 Heisenberg system Cr2BP3O12 are
investigated by magnetic susceptibility chi(T) measurements, electron spin
resonance, neutron diffraction, and density functional theory (DFT)
calculations, as well as classical and quantum Monte Carlo (MC) simulations.
The broad maximum of chi(T) at 85K and the antiferromagnetic Weiss temperature
of 139 K indicate low-dimensional magnetic behavior. Below TN = 28 K, Cr2BP3O12
is antiferromagnetically ordered with the k = 0 propagation vector and an
ordered moment of 2.5 muB/Cr. DFT calculations, including DFT+U and hybrid
functionals, yield a microscopic model of spin chains with alternating
nearest-neighbor couplings J1 and J1' . The chains are coupled by two
inequivalent interchain exchanges of similar strength (~1-2 K), but different
sign (antiferromagnetic and ferromagnetic). The resulting spin lattice is
quasi-one-dimensional and not frustrated. Quantum MC simulations show excellent
agreement with the experimental data for the parameters J1 ~= 50 K and J1'/J1
~= 0.5. Therefore, Cr2BP3O12 is close to the gapless critical point (J1'/J1 =
0.41) of the spin-3/2 bond-alternating Heisenberg chain. The applicability
limits of the classical approximation are addressed by quantum and classical MC
simulations. Implications for a wide range of low-dimensional S = 3/2 materials
are discussed.Comment: Published version: 13 pages, 7 figures, 5 tables + Supplementary
informatio
Molecular outflow launched beyond the disk edge
One of the long-standing problems of star formation is the excess of angular
momentum of the parent molecular cloud. In the classical picture, a fraction of
angular momentum of the circumstellar material is removed by the
magneto-centrifugally driven disk wind that is launched from a wide region
throughout the disk. In this work, we investigate the kinematics in the
envelope-disk transition zone of the Class I object BHB07-11, in the B59 core.
For this purpose, we used the Atacama Large Millimeter/submillimeter Array in
extended configuration to observe the thermal dust continuum emission
( 1.3 mm) and molecular lines (CO, CO and HCO),
which are suitable tracers of disk, envelope, and outflow dynamics at a spatial
resolution of AU. We report a bipolar outflow that was launched at
symmetric positions with respect to the disk (80~AU in radius), but was
concentrated at a distance of 90--130~AU from the disk center. The two outflow
lobes had a conical shape and the gas inside was accelerating. The large offset
of the launching position coincided with the landing site of the infall
material from the extended spiral structure (seen in dust) onto the disk. This
indicates that bipolar outflows are efficiently launched within a narrow region
outside the disk edge. We also identify a sharp transition in the gas
kinematics across the tip of the spiral structure, which pinpoints the location
of the so-called centrifugal barrier.Comment: 5 pages, 5 figures, Accepted for publication in A&A Letter
TWO DIFFERENT TYPES OF PHOTOCHEMISTRY IN PHYCOERYTHROCYANIN α-SUBUNIT
The photochemical activities of phycoerythrocyanin α-subunits from Mastigocladus laminosus separated by isoelectric focusing were tested by irradiating at 500, 550, 577 and 600 nm. Two types of photoreversible photochromic responses have been characterized by absorption and absorption difference spectroscopy. Type I is the well-known absorption shift from 571 to 506 nm. Type II is a new response characterized by a line-broadening of the 570 nm absorption
- …