117,800 research outputs found

    Evidence for very strong electron-phonon coupling in YBa_{2}Cu_{3}O_{6}

    Full text link
    From the observed oxygen-isotope shift of the mid-infrared two-magnon absorption peak of YBa2_{2}Cu3_{3}O6_{6}, we evaluate the oxygen-isotope effect on the in-plane antiferromagnetic exchange energy JJ. The exchange energy JJ in YBa2_{2}Cu3_{3}O6_{6} is found to decrease by about 0.9% upon replacing 16^{16}O by 18^{18}O, which is slightly larger than that (0.6%) in La2_{2}CuO4_{4}. From the oxygen-isotope effects, we determine the lower limit of the polaron binding energy, which is about 1.7 eV for YBa2_{2}Cu3_{3}O6_{6} and 1.5 eV for La2_{2}CuO4_{4}, in quantitative agreement with angle-resolved photoemission data, optical conductivity data, and the parameter-free theoretical estimate. The large polaron binding energies in the insulating parent compounds suggest that electron-phonon coupling should also be strong in doped superconducting cuprates and may play an essential role in high-temperature superconductivity.Comment: 4 pages, 1 figur

    Oxygen-isotope effect on the in-plane penetration depth in underdoped Y_{1-x}Pr_xBa_2Cu_3O_{7-delta} as revealed by muon-spin rotation

    Full text link
    The oxygen-isotope (^16O/^18O) effect (OIE) on the in-plane penetration depth λab(0)\lambda_{ab} (0) in underdoped Y_{1-x}Pr_xBa_2Cu_3O_{7-delta} was studied by muon-spin rotation. A pronounced OIE on λab−2(0)\lambda_{ab}^{-2}(0) was observed with a relative isotope shift of Δλab−2/λab−2\Delta\lambda^{-2}_{ab}/\lambda^{-2}_{ab}=-5(2)% for x =0.3 and -9(2)% for x=0.4. It arises mainly from the oxygen-mass dependence of the in-plane effective mass mab∗m_{ab}^{\ast}. The OIE exponents of T_{c} and of λab−2(0)\lambda_{ab}^{-2}(0) exhibit a relation that appears to be generic for cuprate superconductors.Comment: 4 pages, 4 eps figures, RevTex

    Speed of Meridional Flows and Magnetic Flux Transport on the Sun

    Full text link
    We use the magnetic butterfly diagram to determine the speed of the magnetic flux transport on the solar surface towards the poles. The manifestation of the flux transport is clearly visible as elongated structures extended from the sunspot belt to the polar regions. The slopes of these structures are measured and interpreted as meridional magnetic flux transport speed. Comparison with the time-distance helioseismology measurements of the mean speed of the meridional flows at the depth of 3.5--12 Mm shows a generally good agreement, but the speeds of the flux transport and the meridional flow are significantly different in areas occupied by the magnetic field. The local circulation flows around active regions, especially the strong equatorward flows on the equatorial side of active regions affect the mean velocity profile derived by helioseismology, but do not influence the magnetic flux transport. The results show that the mean longitudinally averaged meridional flow measurements by helioseismology may not be used directly in solar dynamo models for describing the magnetic flux transport, and that it is necessary to take into account the longitudinal structure of these flows.Comment: 4 pages, 3 figures, accepted in ApJ Letter

    Possible isotope effect on the resonance peak formation in high-Tc_c cuprates

    Full text link
    Starting from the three-band p−dp-d Hubbard Hamiltonian we derive an effective t−Jt-J model including electron-phonon interaction of quasiparticles with optical phonons. Within the effective Hamiltonian we analyze the influence of electronic correlations and electron-phonon interaction on the dynamical spin susceptibility in layered cuprates. We find a huge isotope effect on the resonance peak in the magnetic spin susceptibility, Imχ(q,ω){Im}\chi({\bf q},\omega), seen by inelastic neutron scattering. It results from both the electron-phonon coupling and the electronic correlation effects taken into account beyond random phase approximation(RPA) scheme. We find at optimal doping the isotope coeffiecient αres≈0.35\alpha_{res} \approx 0.35 which can be further tested experimentally.Comment: revised version, new figure is added. Phys. Rev. B 69, 0945XX (2004); in pres

    Representation theory of the stabilizer subgroup of the point at infinity in Diff(S^1)

    Get PDF
    The group Diff(S^1) of the orientation preserving diffeomorphisms of the circle S^1 plays an important role in conformal field theory. We consider a subgroup B_0 of Diff(S^1) whose elements stabilize "the point of infinity". This subgroup is of interest for the actual physical theory living on the punctured circle, or the real line. We investigate the unique central extension K of the Lie algebra of that group. We determine the first and second cohomologies, its ideal structure and the automorphism group. We define a generalization of Verma modules and determine when these representations are irreducible. Its endomorphism semigroup is investigated and some unitary representations of the group which do not extend to Diff(S^1) are constructed.Comment: 34 pages, no figur
    • …
    corecore