9 research outputs found

    Magnetic-field-induced electronic instability of Weyl-like fermions in compressed black phosphorus

    Full text link
    Revealing the role of Coulomb interaction in topological semimetals with Dirac/Weyl-like band dispersion shapes a new frontier in condensed matter physics. Topological node-line semimetals (TNLSMs), anticipated as a fertile ground for exploring electronic correlation effects due to the anisotropy associated with their node-line structure, have recently attracted considerable attention. In this study, we report an experimental observation for correlation effects in TNLSMs realized by black phosphorus (BP) under hydrostatic pressure. By performing a combination of nuclear magnetic resonance measurements and band calculations on compressed BP, a magnetic-field-induced electronic instability of Weyl-like fermions is identified under an external magnetic field parallel to the so-called nodal ring in the reciprocal space. Anomalous spin fluctuations serving as the fingerprint of electronic instability are observed at low temperatures, and they are observed to maximize at approximately 1.0 GPa. This study presents compressed BP as a realistic material platform for exploring the rich physics in strongly coupled Weyl-like fermions.Comment: 10 pages, 4 figure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Acid rain in China

    No full text
    Related to DAP 87-4249 under which IDRC supported the WCED to acquire and duplicate original papers, submissions, tapes and transcripts, became the depository of all original archival materials and received the right to microfiche the collection for broader disseminatio

    Circular RNA hsa_circ_0098181 inhibits metastasis in hepatocellular carcinoma by activating the Hippo signaling pathway via interaction with eEF2

    No full text
    Introduction and Objectives: The development of hepatocellular carcinoma (HCC) is a multi-step process that accumulates genetic and epigenetic alterations, including changes in circular RNA (circRNA). This study aimed to understand the alterations in circRNA expression in HCC development and metastasis and to explore the biological functions of circRNA. Materials and Methods: Ten pairs of adjacent chronic hepatitis tissues and HCC tissues from patients without venous metastases, and ten HCC tissues from patients with venous metastases were analyzed using human circRNA microarrays. Differentially expressed circRNAs were then validated by quantitative real-time PCR. In vitro and in vivo assays were performed to assess the roles of the circRNA in HCC progression. RNA pull-down assay, mass spectrometry analysis, and RNA-binding protein immunoprecipitation were conducted to explore the protein partners of the circRNA. Results: CircRNA microarrays revealed that the expression patterns of circRNAs across the three groups were significantly different. Among these, hsa_circ_0098181 was validated to be lowly expressed and associated with poor prognosis in HCC patients. Ectopic expression of hsa_circ_0098181 delayed HCC metastasis in vitro and in vivo. Mechanistically, hsa_circ_0098181 sequestered eukaryotic translation elongation factor 2 (eEF2) and dissociated eEF2 from filamentous actin (F-actin) to prevent F-actin formation, which blocked activation of the Hippo signaling pathway. In addition, the RNA binding protein Quaking-5 bound directly to hsa_circ_0098181 and induced its biogenesis. Conclusions: Our study reveals changes in circRNA expression from chronic hepatitis, primary HCC, to metastatic HCC. Further, the QKI5-hsa_circ_0098181-eEF2-Hippo signaling pathway exerts a regulatory role in HCC
    corecore