244 research outputs found

    Residual welding stress of I-section members beyond the limits of width-thickness ratio

    Get PDF
    Despite the extensive studies on the effect of width-thickness ratio and residual stress on member behavior, few scholars have probed into the residual stress distribution on the I-section members. Based on the principle of blind hole drilling, this paper conducts an experimental study of the residual welding stresses of eight welded I-shaped members. Through the analysis of the test results, the author draws the following conclusion: it is safe to use I-section members beyond the limits of width-thickness ratio because the residual stress distribution is not severely affected by width-thickness ratio

    Separation and Identification of HSP-Associated Protein Complexes from Pancreatic Cancer Cell Lines Using 2D CN/SDS-PAGE Coupled with Mass Spectrometry

    Get PDF
    Protein complexes are a cornerstone of many biological processes and together they form various types of molecular machinery. A broad understanding of these protein complexes is crucial for revealing and building models of protein function and regulation. Pancreatic cancer is a highly lethal disease which is difficult to diagnose at early stage and even more difficult to cure. In this study, we applied a gradient clear native gel system combined with subsequent second-dimensional SDS-PAGE to separate protein complexes from cell lysates of SW1990 and PANC-1 pancreatic cancer cell lines with different degrees of differentiation. Ten heat-shock-protein- (HSP-) associated protein complexes were separated and identified, and the differentially expressed proteins related to cancers were also found, such as HSP60, protein disulfide-isomerase A4 (ERp72), and transitional endoplasmic reticulum ATPase (TER ATPase)

    Multiphoton Process and Anomalous Potential of Cell Membrane by Laser Radiation

    Get PDF
    In this paper, by the use of quantum biology and quantum optics, the laser induced potential variation of cell membrane has been studied. Theoretically, we have found a method of calculating the monophoton and multiphoton processes in the formation of the anomalous potential of cell membrane. In contrast with the experimental results, our numerical result is in the same order. Therefore, we have found the possibility of cancer caused by the laser induced anomalous cell potential

    Optimal Spatial-Temporal Triangulation for Bearing-Only Cooperative Motion Estimation

    Full text link
    Vision-based cooperative motion estimation is an important problem for many multi-robot systems such as cooperative aerial target pursuit. This problem can be formulated as bearing-only cooperative motion estimation, where the visual measurement is modeled as a bearing vector pointing from the camera to the target. The conventional approaches for bearing-only cooperative estimation are mainly based on the framework distributed Kalman filtering (DKF). In this paper, we propose a new optimal bearing-only cooperative estimation algorithm, named spatial-temporal triangulation, based on the method of distributed recursive least squares, which provides a more flexible framework for designing distributed estimators than DKF. The design of the algorithm fully incorporates all the available information and the specific triangulation geometric constraint. As a result, the algorithm has superior estimation performance than the state-of-the-art DKF algorithms in terms of both accuracy and convergence speed as verified by numerical simulation. We rigorously prove the exponential convergence of the proposed algorithm. Moreover, to verify the effectiveness of the proposed algorithm under practical challenging conditions, we develop a vision-based cooperative aerial target pursuit system, which is the first of such fully autonomous systems so far to the best of our knowledge

    AdLER: Adversarial Training with Label Error Rectification for One-Shot Medical Image Segmentation

    Full text link
    Accurate automatic segmentation of medical images typically requires large datasets with high-quality annotations, making it less applicable in clinical settings due to limited training data. One-shot segmentation based on learned transformations (OSSLT) has shown promise when labeled data is extremely limited, typically including unsupervised deformable registration, data augmentation with learned registration, and segmentation learned from augmented data. However, current one-shot segmentation methods are challenged by limited data diversity during augmentation, and potential label errors caused by imperfect registration. To address these issues, we propose a novel one-shot medical image segmentation method with adversarial training and label error rectification (AdLER), with the aim of improving the diversity of generated data and correcting label errors to enhance segmentation performance. Specifically, we implement a novel dual consistency constraint to ensure anatomy-aligned registration that lessens registration errors. Furthermore, we develop an adversarial training strategy to augment the atlas image, which ensures both generation diversity and segmentation robustness. We also propose to rectify potential label errors in the augmented atlas images by estimating segmentation uncertainty, which can compensate for the imperfect nature of deformable registration and improve segmentation authenticity. Experiments on the CANDI and ABIDE datasets demonstrate that the proposed AdLER outperforms previous state-of-the-art methods by 0.7% (CANDI), 3.6% (ABIDE "seen"), and 4.9% (ABIDE "unseen") in segmentation based on Dice scores, respectively. The source code will be available at https://github.com/hsiangyuzhao/AdLER

    Risk factors for in-hospital mortality after total arch procedure in patients with acute type A aortic dissection

    Get PDF
    ObjectKnowledge about the risk factors of in-hospital mortality for acute type A aortic dissection (ATAAD) patients who received total arch procedure is limited. This study aims to investigate preoperative and intraoperative risk factors of in-hospital mortality of these patients.MethodsFrom May 2014 to June 2018, 372 ATAAD patients received the total arch procedure in our institution. These patients were divided into survival and death groups, and patients` in-hospital data were retrospectively collected. Receiver operating characteristic curve analysis was adopted to determine the optimal cut-off value of continuous variables. Univariate and multivariable logistic regression analyses were used to detect independent risk factors for in-hospital mortality.ResultsA total of 321 patients were included in the survival group and 51 in the death group. Preoperative details showed that patients in the death group were older (55.4 ± 11.7 vs. 49.3 ± 12.6, P = 0.001), had more renal dysfunction (29.4% vs. 10.9%, P = 0.001) and coronary ostia dissection (29.4% vs. 12.2%, P = 0.001), and decreased left ventricular ejection fraction (LVEF) (57.5 ± 7.9% vs. 59.8 ± 7.3%, P = 0.032). Intraoperative results showed that more patients in the death group experienced concomitant coronary artery bypass grafting (35.3% vs. 15.3%, P = 0.001) with increased cardiopulmonary bypass (CPB) time (165.7 ± 39.0 vs. 149.4 ± 35.8 min, P = 0.003), cross-clamp time (98.4 ± 24.5 vs. 90.2 ± 26.9 min, P = 0.044), and red blood cell transfusion (913.7 ± 629.0 vs. 709.7 ± 686.6 ml, P = 0.047). Logistic regression analysis showed that age >55 years, renal dysfunction, CPB time >144 min, and RBC transfusion >1,300 ml were independent risk factors for in-hospital mortality in patients with ATAAD.ConclusionIn the present study, we identified that older age, preoperative renal dysfunction, long CPB time, and intraoperative massive transfusion were risk factors for in-hospital mortality in ATAAD patients with the total arch procedure
    corecore