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1. Introduction 

Lung cancer is one of the most commonly diagnosed malignant tumors, and has the highest 
death rate of all cancer types. Both the incidence rate and death rate of lung cancer have 
increased rapidly worldwide during the last 50 years. Lung cancer has now become the 
leading cause of cancer death in males, and the second most common cause of cancer death 
in females, after breast cancer. According to data provided by the International Agency for 
Research on Cancer, about 1.6 million new lung cancer patients were confirmed in 2008, 
accounting for 13% of the total cancer cases, while about 1.4 million patients died, 
amounting to 18% of the total deaths caused by cancer worldwide (Jemal et al., 2011). 
Lung cancer can be divided according to histological subtype into non-small cell lung cancer 
(NSCLC) and small cell lung cancer (SCLC), with the latter accounting for about 14% of new 
lung cancer cases in the USA and Europe in 2004 (Jemal et al., 2004). The clinical and 
histological features of SCLC were first recognized by Barnard in 1926 as being distinct from 
those of other types of lung cancer (Barnard, 1926). SCLC cells develop from lung 
Kulchitsky cells, and SCLC can be further subdivided into three different types: oat-cell 
type, intermediate-cell type and mixed-cell type (Travis, 1999). Smoking is the key risk 
factor for SCLC, and more than 95% of patients develop SCLC as a result of tobacco 
smoking. Smoking more cigarettes and prolonging the duration of smoking can both 
increase the risk of developing SCLC (Brownson et al., 1992), while stopping smoking 
reduces its risk, compared to persistent smokers (Khuder and Mutgi, 2001; Jackman and 
Johnson, 2005). SCLC is very aggressive and the median survival time without treatment is 
less than 4 months. Chemotherapy and radiotherapy represent the two major treatments for 
SCLC. According to the standards developed by the Veterans Administration Lung Cancer 
Study Group, SCLC can be divided into two stages: a limited stage and an extensive stage 
(Simon, 2003). Cancer cells in limited-stage SCLC are restricted to the ipsilateral hemithorax 
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and can be treated by both chemotherapy and radiation therapy. About 20% of patients are 
cured after treatment, and the median survival time is about 18 months. Patients with 
extensive-stage SCLC have a high response rate to chemotherapy, which is the primary 
treatment for this disease, but the median survival time is only about 9 months because 
most patients relapse and the results of salvage therapy are poor (Janne et al., 2002; Demedts 
et al., 2010). 
Transforming growth factor-beta (TGF-β) belongs to a large superfamily of cell cytokines, 
and is an important component of several cellular metabolic pathways. TGF-β signaling 
pathways regulate many aspects of cellular function, such as cellular proliferation, 
differentiation, migration, apoptosis, adhesion, angiogenesis, immune surveillance and 
survival (Jakowlew, 2006). TGF-β plays a very complex dual role in cancer development, 
progress and metastasis (Akhurst & Derynck, 2001; Elliott & Blobe, 2005). TGF-β inhibits 
primary tumor development and growth by inducing cell cycle arrest and apoptosis as a 
tumor suppressor during the early phase of tumorigenesis (Arteaga, et al. 1993), but also 
promotes tumor invasion and metastasis by inducing the epithelial-mesenchymal transition 
in some epithelial cells, indicating that TGF-β can also act as a tumor promoter in the late 
stage of cancer (Miyazono, 2009).  
There are two types of TGF-β signaling pathways; Smad-dependent and Smad-independent 
pathways. In Smad-dependent TGF-β signaling pathways, autocrine or exogenous TGF-β 
binds to the TGFBR2 and TGFBR1 membrane receptors. TGFBR2 then phosphorylates 
TGFBR1, which activates receptor-regulated Smads (also known as R-Smads). The R-Smads 
usually comprise Smad2 and Smad3. Activated Smad2 and Smad3 form complexes with 
Smad4, the common-partner Smad (co-Smad) in mammals. The subsequent R-Smad-co-
Smad complexes shuttle between the nucleus and cytoplasm, and interact with various 
transcription factors and transcriptional co-activators such as AP-1, Sp1, p300, and SMIF to 
regulate the transcription of target genes (Derynck & Zhang, 2003). The phosphorylation of 
R-Smads can be blocked by inhibitory Smad, which starts the ubiquitination and 
degradation of the R-Smad-co-Smad complexes, thus inhibiting signal transduction (Itoh & 
ten Dijke, 2007). This TGF-β signal transduction pathway mainly regulates cell metabolism 
through this network involving cell cycle capture and apoptosis. In addition to Smad-
mediated signaling pathways, TGF-β also activates other pathways, including Erk, JNK and 
p38 MAPK kinase pathways, via Smad-independent mechanisms (Moustakas & Heldin, 
2007). 
Both Smad-dependent and -independent TGF-β signaling pathways start by binding TGF-β 
to its transmembrane receptor TGFBR2, which then activates the downstream signal 
transduction. However, TGFBR2 expression is often reduced or even blocked in tumor cells 
(Levy & Hill, 2006). In bladder cancer, deficient TGFBR2 expression leads to loss of the 
growth inhibition function of TGF-β, and loss of expression of TGFBR2 has been shown to 
correlate with tumor grade (Tokunaga, et al., 1999). Other studies also found that 
inactivation of TGFBR2 played a central role in the development and progression of human 
gastric cancer, and TGFBR2 expression has shown a strong association with the degree of 
malignancy in gastric cancer (Chang, et al., 1997). The expression of TGFBR2 was also 
reduced in breast cancer (Gobbi, et al. 2000). Although the reasons for defective TGFBR2 
expression are still unknown, loss of or reduced expression of TGFBR2 may be caused by 
histone deacetylation in lung cancer cell lines (Osada et al., 2001). 
TGFBR2 mutations have also been observed in tumor cells. A DNA variant with a frameshift 
mutation in the poly(A)10 repeat, resulting in microsatellite instability (MSI), has been 
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detected in the coding region of the TGFBR2 gene in several types of tumors, including 
colon cancer, gastric cancer, and gliomas (Markowitz et al. 1995; Pinto et al., 1997; Izumoto 
et al. 1997). This frameshift could affect gene function and be related to cancer development. 
This MSI also been detected in both NSCLC and SCLC (Kim et al., 2000; Tani et al., 1997), 
though the mutation rate seems to be much lower than that of deficient TGFBR2 expression 
rate in lung cancer. A previous study identified a novel microdeletion (c.492_507del) in giant 
cell carcinoma (GCC) and large cell carcinoma (LCC) patients, compared to other NSCLC 
subtypes. This 16-bp microdeletion introduced a premature stop codon at positions 590–592 
of the cDNA, resulting in a truncated TGFBR2 protein with a mutated transmembrane 
domain and loss of a kinase domain. Although the mutated TGFBR2 played an important 
role in the abrogation of TGF-β signal transduction in LCC cells (Wang et al., 2007), it was 
not correlated with the reduced TGFBR2 expression seen in NSCLC (Xu et al., 2007).  
However, TGFBR2 has rarely been studied in Chinese SCLC samples and its role in TGF-β 
insensitivity in this population thus remains unknown. The present study therefore 
examined the levels of TGFBR2 expression in 27 pairs of formalin-fixed, paraffin-embedded 
SCLC tumors and compared them with NSCLC samples. The entire cDNA region and 
promoter of the gene was then sequenced to identify the causal variants in the TGFBR2 gene 
that accounted for its defective expression. 

2. Materials and methods 

2.1 Specimens 

Twenty-seven formalin-fixed, paraffin-embedded SCLC samples and their corresponding 
normal tissues were collected by the Laboratory of the Department of Thoracic Surgery, 
Changhai Hospital between 2000 and 2007. All the patients had undergone pulmonary 
resection for primary SCLC at Changhai Hospital and had provided informed consent, and 
none had received preoperative radiotherapy or chemotherapy. The demographic and 
clinical features of these SCLC cases are summarized in Table 1. This research was 
conducted with the official approval of the academic advisory board of the Institute of 
Genetics, Fudan University, Shanghai, P. R. China. 
An additional 65 formalin-fixed, paraffin-embedded NSCLC samples and their 
corresponding normal tissues were collected between 2005 and 2007, as a control group to 
compare with SCLC (Table 2). These tissues were also provided by the Laboratory of the 
Department of Thoracic Surgery, Changhai Hospital after obtaining the patients’ consent. 
None of these patients had received radiotherapy or chemotherapy prior to surgery. 

2.2 Immunohistochemistry 

Expression of TGFBR2 was detected by immunohistochemistry assay using a monoclonal 
antibody against the extracellular domain of TGFBR2 (R & D Systems, Minneapolis, MN) 
via two-step immunohistochemical staining using the EnVision system (DAKO Cytomation, 
Denmark), as described in our previous report (26). In brief, after the paraffin sections were 
deparaffinized and hydrated, serial 4-μm thick sections were placed into 3% hydrogen 
peroxide solution for 10 min to block endogenous peroxidase activity. For antigen retrieval, 
the sections were treated with boiling 0.01 mol/L citrate buffer (pH 6.0) for 25 min and then 
incubated with 10% fetal calf serum for 20 min at room temperature. After the blocking 
serum was removed, the sections were incubated with the primary antibody (1:50) at room 
temperature for 1 h, followed by rinsing three times with phosphate-buffered saline (PBS).  
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Re: reduced TGFBR2 expression in tumor tissues, Loss: loss of TGFBR2 expression, Pr: preserved 
TGFBR2 expression. 
The staining score of each tissue is the product of the proportion of positive staining cells and intensity 
scores. 

Table 1. Clinical features and TGFBR2 expression of the 27 SCLC patients 
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Type Total 
TGFBR2 expression 

Pr Re 

AdC 33 21 12 
SqC 27 18 9 

Ad-SqC 3 2 1 
Atypical Carcinoid 1 1 

Low Differentiation Sarcoma 1 1 
Grand Total 65 42 23 

Re: reduced TGFBR2 expression in tumor tissues, Pr: preserved TGFBR2 expression. 

Table 2. Clinical features and TGFBR2 expression in NSCLC samples  
The sections were then incubated with a working solution of horseradish peroxidase-labeled 
goat anti-mouse immunoglobulin, as provided in the EnVision kit, for 30 min. Finally, the 
peroxidase activity was developed with 3,3-diaminobenzidine tetrahydrochloride and 
hydrogen peroxide. Because NSCLC develops from bronchial epithelium precursors, human 
normal bronchial epithelium was used as a positive control. A negative control for each 
specimen was provided by treating the sections with PBS instead of the primary antibody. 

2.3 Interpretation of the staining and data evaluation 

All sections were examined by standard light microscopy and scored semi-quantitatively on 

the basis of the percentage of immunoreactive cells and on the intensity of the staining 

reaction. The samples were initially classified into one of four grades, according to staining 

intensity: 0 (negative staining, equivalent to the negative control), 1 (weak staining), 2 

(medium staining) and 3 (strong staining). The percentages of positively-stained cells were 

assigned as 0 for 0–25%, 1 for 26–50%, 2 for 51–75% and 3 for 76–100%, respectively. The 

final score was determined as the product of the proportion and intensity scores, and ranged 

from 0–9. Samples were considered to be negatively stained if the final score was 0, and 

positively stained if the final score was 1–9. Moreover, cancer samples were classified as 

preserved- or reduced-type in terms of TGFBR2 expression, depending on whether the final 

score was the same as or less than that of its corresponding normal lung tissue. 

2.4 DNA Extraction and mutation analysis 

Target cells from formalin-fixed, paraffin-embedded tissue sections were microdissected 

and scraped into microtubes. After deparaffinization with xylene and washing in ethanol, 

DNA was extracted by standard proteinase K digestion and phenol-chloroform extraction 

(Sambrook & Maniatis, 1989).  

The presence of the 16-bp microdeletion in exon 4, which was previously detected in LCC 

and GCC, was examined in all SCLC tissues using the following forward and reverse 

primers to amplify the fragments of 117/101 bp, representing the wild/mutant alleles: 5'-

caccagcaatcctgacttgttg-3' and 5'-cggttaacgcggtagcagtag-3'. The MSI in exon 3 was detected 

by the STR  method using an ABI 3100 Sequencer and the following forward and reverse 

primers were used to amplify the exon 3 fragment (normally 242 bp) of the TGFBR2 gene: 

5’-tccaatgaatctcttcactc-3’ and 5’-cccacacccttaagagaaga-3’. c.1167 C>T in exon 4 of TGFBR2 

was detected by direct sequencing using an ABI 3100 Sequencer and the following forward 

and reverse primers to amplify the exon 4 fragment (242 bp) of the TGFBR2 gene: 5’-
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cccaagatgcccatcgtg-3’ and 5’-tcccaggctcaaggtaaagg-3’. The other primers used for promoter 

and exon sequencing are listed in Table 3. 

 

Fragments Region Direction Sequence (5' - 3') 

TGFBR2 promoter Promoter part1 Forward aactacaaaacatgtacaccagg 

TGFBR2 promoter   Reverse ttctttaggtcgaagtctagagg 

TGFBR2 promoter Promoter part2 Forward atgcagaatctctgcctgcctc 

TGFBR2 promoter   Reverse cgagagctttggccgacttt 

TGFBR2 promoter Promoter part3 Forward gtaaatacttggagcgaggaactc 

TGFBR2 promoter   Reverse ttctgaacgtgcggtgggat 

TGFBR2 exon exon 1 Forward tcggtctatgacgagcag 

TGFBR2 exon   Reverse gggaccccaggaagaccc 

TGFBR2 exon exon 2 Forward gggctggtatcaagttcatttg 

TGFBR2 exon   Reverse ggagacagagatacactgactgtg 

TGFBR2 exon exon 3 Forward tccaatgaatctcttcactc 

TGFBR2 exon   Reverse cccacacccttaagagaaga 

TGFBR2 exon exon 4-1 Forward ccaactccttctctccttgttttg 

TGFBR2 exon   Reverse tccaagaggcatactcctcatagg 

TGFBR2 exon exon 4-2 Forward gtcgctttgctgaggtctataagg 

TGFBR2 exon   Reverse ccaggctcaaggtaaaggggatctagca 

TGFBR2 exon exon 5 Forward ggcagctggaattaaatgatgggc 

TGFBR2 exon   Reverse tgctcgaagcaacacatg 

TGFBR2 exon exon 6 Forward tttcctttgggctgcacatg 

TGFBR2 exon   Reverse cctaagaggcaacttggttgaatc 

TGFBR2 exon exon 7 Forward ccaactcatggtgtccctttg 

TGFBR2 exon   Reverse tctttggacatgcccagcctg 

TGFBR2 MSI Exon 3 Forward Fam-tccaatgaatctcttcactc 

TGFBR2 MSI   Reverse cccacacccttaagagaaga 

TGFBR2 LOH Exon 4 Forward cccaagatgcccatcgtg 

TGFBR2 LOH   Reverse tcccaggctcaaggtaaagg 

Table 3. Primers used in the study 

2.5 Statistical analysis 

Data were analyzed using χ2 tests, corrected χ2 tests, or Fisher’s exact tests. A P value of less 
than 0.05 was considered statistically significant. 

3. Results 

3.1 TGFBR2 expression was more often reduced in SCLC than in NSCLC 

TGFBR2 expression was assessed using immunohistochemistry. Normal human lung tissues 
and normal human bronchial epithelium were used as positive controls. Over 75% of cells in 
these tissues exhibited consistently strong staining, both showing staining scores of 3 × 3 = 
9, indicating normal TGFBR2 expression (Figure 1). Immunostaining of TGFBR2 was 
performed in 27 SCLC tumor tissue samples and their corresponding normal tissues. All the 
normal tissues showed strong staining in over 75% cells with staining scores of 9. One SCLC 
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sample showed negative TGFBR2 expression (score of 0), while the remaining 26 were 
TGFBR2-positive. Furthermore, 16 of the total 27 SCLC tumor samples showed reduced 
TGFBR2 expression (score of 1–6) and 10 showed preserved expression (Table 1).  
None of the 65 NSCLC samples showed negative TGFBR2 expression (staining score of 0). In 

addition, only 35.4% (23/65) of all NSCLC tumor tissues showed reduced (score of 1–6) 

TGFBR2 expression and 64.6% (42/65) of tumors had preserved expression (score of 9) 

(Table 2). When adenocarcinoma and squamous cell carcinoma tissues were analyzed 

separately, the frequencies of preserved type were also higher (63.6% (21/33) and 66.7% 

(18/27) respectively) than those of reduced type (36.4% (12/33) and 33.4% (9/27) 

respectively). In contrast, the frequency of preserved type in SCLCs (47%, 10/27) was much 

lower than that of reduced type (63%, 17/27), indicating that reduced TGFBR2 expression 

was more frequent in SCLC cells (Table 1 & 2). 

 

 

Fig. 1. Expression of TGFBR2 in lung cancer by immunohistochemical analysis (×400).  
A. The expression of normal lung epithelium; 
B. The expression of normal bronchus epithelium; 
C. Reduced expression of SCLC; 
D. Preserved expression of SCLC; 
E. Reduced expression of AdC; 
F. Preserved expression of AdC; 
G. Reduced expression of SCC; 
H. Preserved expression of SCC. 

3.2 No significant relationship was found between TGFBR2 expression and clinical 
features in SCLC patients 

The associations between TGFBR2 expression and other clinical features were analyzed. No 

significant associations were found between TGFBR2 expression and gender (P = 1.00), age 

(P = 0.14), tumor size (P = 1.00), nodal involvement (P = 1.00), metastasis (P = 1.00) or stage 

(P = 0.12) (Table 4). 
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 Cases 
Gender TGFBR2 expression 

Age P-value 
M F Re Pr 

Age        
≤60 16Ȑ59.26%ȑ 11 5 10 6 32-57 P=1.0000 
＞60 11Ȑ40.74%ȑ 10 1 7 4 61-77  

Gender        
Male 21Ȑ77.78%ȑ 21 0 15 6  P=0.1358 

Female 6Ȑ22.22%ȑ 0 6 2 4   
Tumor Size        

T1 4 3 1 3 1  P=1.0000 
T2 16 11 5 14 9 T≥2  
T3 3 3 0     
T4 4 4 0     

Nodal 
involvement 

       

N0 5 5 0 3 2  P=1.0000 
N1 10 8 2 14 8 N≥1  
N2 10 8 2     
N3 2 2 0     

Metastasis        
M0 26 20 6 16 10  P=1.0000 
M1 1 1 0 1 0   

Stage        
˧ 2 2 0 1 1  P=0.1164 
˨ 11 8 3 5 6   
˩ 13 10 3 11 2   
˪ 1 1 0 0 1   

Table 4. Association between TGFBR2 expression and clinical features of 27 SCLC patients 

3.3 TGFBR2 expression is related to tumor types 

The relationship between TGFBR2 expression and histological type was analyzed. Samples 
were categorized as SCLC or NSCLC subtypes because they developed from different lung 
cells. As shown in Table 5, a significant association between TGFBR2 expression and 
histological type was identified (P = 0.0151), indicating the existence of a significant 
difference in TGFBR2 expression levels between SCLC and NSCLC subtypes (Table 5).  
For further statistical analysis, NSCLC cases were divided into AdC, SqC, Ad-SqC and other 
subtypes. Because of the sample sizes, comparisons were only made between SCLC and 
AdC, and between SCLC and SqC. The results demonstrated significant differences in 
TGFBR2 expression between SCLC and AdC, and between SCLC and SqC (P = 0.0402 and 
0.0293, respectively) (Table 5). 

3.4 Mutations in exon 4 of TGFBR2 

In a previous study, we identified a microdeletion (c.492_507del) in patients with GCC and 
LCC. We therefore investigated the occurrence of this microdeletion in SCLC in the present 
study. Genomic DNA was extracted from 21 pairs of formalin-fixed, paraffin-embedded 
SCLC tissues and their corresponding normal tissues. The coding and promoter regions of  
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Item n Reduced Preserved P-value 

(1)     
SCLC 27 17 (63.0%) 10 (37.0%) 0.0151 
NSCLC 65 23 (35.4%) 42 (64.6%)  
(2)     
SCLC 27 17 (63.0%) 10 (37.0%) 0.0402 
AdC 33 12 (36.4%) 21 (63.6%)  
(3)     
SCLC 27 17 (63.0%) 10 (37.0%) 0.0293 
SqC 27 9 (33.3%) 18 (66.7%)  

Table 5. TGFBR2 expression in different subtypes of tumor 
TGFBR2 were sequenced. The DNA from the other six pairs of tissues was degraded and 
was unsuitable for amplification. No microdeletion was observed in any of the tested SCLC 
samples.  
However, another novel variant in exon 4 of TGFBR2 was identified in 11 of 21 SCLC tumor 
samples. This variant at c.1167 in the TGFBR2 coding region was T/T homozygous in eight 
out of 11 cases, and C/T heterozygous in the other three cases, compared with C/C 
homozygous in normal individuals. The corresponding normal samples for these were C/T 
heterozygous. In the other 10 pairs of samples, however, the site was C/C homozygous. 
These results suggest that loss of heterozygosity (LOH) occurred in the eight tumors whose 
alleles became T/T homozygous from C/T heterozygous (Figure 2 and Table 6).  
Interestingly, this change was a synonymous mutation that did not alter the amino acid 
sequence. We investigated its effect on the expression of TGFBR2, and found that TGFBR2 
expression was reduced in nearly all T carriers (81.8%), compared with that in normal 
tissues, while only 60% of CC carriers had reduced TGFBR2 expression (Table 6). 
 

 

Fig. 2.  LOH in SCLC. 
A. CC sequence in normal lung tissue from SCLC patients; 
B. TC sequence in normal lung tissue from SCLC patients; 
C. TT sequence in tumor tissue from SCLC patients. 
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Patient No. Tissue LOH TGFBR2 expression 

S1 
+ TT 

Pr 
- CT 

S3 
+ CC 

Re 
- CC 

S5 
+ CC 

Re 
- CC 

S6 
+ TT 

Re 
- CT 

S7 
+ CC 

Re 
- CC 

S8 
+ TT 

Re 
- CT 

S9 
+ CC 

Pr 
- CC 

S11 
+ CC 

Pr 
- CC 

S12 
+ TT 

Re 
- CT 

S13 
+ TT 

Re 
- CT 

S15 
+ CT 

Re 
- CT 

S16 
+ CC 

Re 
- CC 

S18 
+ CC 

Pr 
- CC 

S19 
+ TT 

Pr 
- CT 

S20 
+ CT 

Re 
- CT 

S21 
+ CC 

Pr 
- CC 

S22 
+ CT 

Re 
- CT 

S23 
+ TT 

Re 
- CT 

S25 
+ CC 

Re 
- CC 

S26 
+ TT 

Re 
- CT 

S27 
+ CC 

Re 
- CC 

+: tumor tissues; -: normal lung tissue of patients; 
Re: reduced TGFBR2 expression in tumor tissues, Pr: preserved TGFBR2 expression. 

Table 6. Relationship between LOH in exon 4 and TGFBR2 expression 

3.5 MSI in TGFBR2 in SCLC 

Poly(A)10/(A)9 heterozygosity in exon 3 of TGFBR2, representing MSI, was detected in 60% 

of SCLC samples (9 out of 15), as shown in Table 7. However, no association between MSI 

and TGFBR2 expression was found (P = 0.264). 
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Patient No. Tissue MSI TGF-BRII expression 

S1 
+ poly (A)10 Preserved 
- poly (A)10 

S2 
+ poly (A)10 Preserved 
- poly (A)10 

S3 
+ poly (A)10/(A)9 Reduced 
- poly (A)10/(A)9 

S5 
+ poly (A)10/(A)9 Reduced 
- poly (A)10/(A)9 

S6 
+ poly (A)10/(A)9 Reduced 
- poly (A)10/(A)9 

S9 
+ poly (A)10/(A)9 Preserved 
- poly (A)10 

S13 
+ poly (A)10/(A)9 Reduced 
- poly (A)10 

S16 
+ poly (A)10/(A)9 Reduced 
- poly (A)10/(A)9 

S19 
+ poly (A)10/(A)9 Preserved 
- poly (A)10 

S21 
+ poly (A)10 Preserved 
- poly (A)10 

S22 
+ poly (A)10 Reduced 
- poly (A)10 

S23 
+ poly (A)10/(A)9 Reduced 
- poly (A)10/(A)9 

S25 
+ poly (A)10 Reduced 
- poly (A)10 

S26 
+ poly (A)10/(A)9 Reduced 
- poly (A)10/(A)9 

S28 
+ poly (A)10 Reduced 
- poly (A)10 

S29 
+ poly (A)10 Reduced 
- poly (A)10 

S30 
+ poly (A)10 Reduced 
- poly (A)10 

+: tumor tissues;  -: normal lung tissue of patients; 
Re: reduced TGFBR2 expression in tumor tissues, Pr: preserved TGFBR2 expression. 

Table 7. MSI detection and relation with TGFBR2 expression 

4. Discussion 

Tumor cells are often able to escape from TGF-β-signaling-induced cell cycle capture and 
apoptosis. TGF-β has a dual function in tumor development (Akhurst & Derynck, 2001;  
Elliott & Blobe, 2005); it acts as a tumor suppressor during the initial stages of tumor 
development (Arteaga, et al. 1993), but promotes tumor progression during the later stages 
(Miyazono, 2009). High levels of TGF-β expression in tumor cells can induce tumor 
evolution by stimulating angiogenesis and through other potential immunosuppressive 
effects, as well as by directly affecting tumor cell invasion and metastasis (Pardali & 
Moustakas, 2007). These direct effects can be achieved via Smad-dependent pathways, or 
may be mediated by interference with these pathways (Derynck & Zhang, 2003). Changes in 
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the TGF-β signaling pathway may lead to abnormal signal transduction and cause 
dysregulated cell growth and differentiation. The first step in any mechanism involves 
binding of autocrine or paracrine TGF-β to the TGFBR2 receptor on the cell membrane, 
before activation of various downstream receptors can occur. TGFBR2 thus plays a key role 
in TGF-β signaling pathways, and its expression is reduced or blocked in many tumors 
(Chang et al., 1997; Tokunaga et al., 1999; Gobbi et al. 2000;Levy & Hill, 2006), resulting in 
partial or complete disruption of the TGF-β pathway. 
Previous studies demonstrated that TGFBR2 expression in NSCLC differed between LCC 
and AdC, SqC or non-LCC cases, but the role of defective TGFBR2 expression in the 
initiation and/or development of SCLC (Xu et al., 2007), and its expression status in SCLC 
remain largely unknown. Furthermore, SCLC is phenotypically distinct from and much 
more malignant than NSCLC. We therefore compared TGFBR2 expression between SCLC 
and NSCLC. Immunohistochemical staining with TGFBR2 antibody revealed significant 
differences in the incidence of reduced expression in SCLC (63.0% of cases) versus AdC 
(36.4% of cases, P = 0.0402) and SqC (33.3% of cases, P = 0.0293), or SCLC versus NSCLC 
(35% of cases, P = 0.0151). These differences in expression levels between SCLC and NSCLC 
were consistent with the histopathologic classification of these tumors, suggesting that 
defective TGFBR2 expression might contribute to the initiation and/or development of 
SCLC.  
To determine the reason for the reduced expression of TGFBR2, we examined the mutation 
status of c.492 507del in exon 4, but found no changes in this sequence in SCLC tumor 
samples. We subsequently determined the MSI status in exon 3, and identified a DNA 
variant with a frameshift mutation in the TGFBR2 poly(A)10 repeat (which causes MSI) in 
the coding region of the TGFBR2 gene. A total of 60.0% of SCLC were poly(A)10/(A)9 
heterozygous, but no association was found between the MSI and TGFBR2 expression. 
However, no MSI was identified in our previous study of NSCLC, suggesting that the MSI 
in SCLC is at least partly associated with its carcinogenesis. We also sequenced all seven 
exons and the promoter region of the TGFBR2 gene and identified a novel LOH at c.1167 in 
38.1% (8/21) of SCLC tissues. Further analysis showed that most of the mutant T-allele 
carriers (81.8%) had reduced TGFBR2 expression in tumor tissues, compared with only 60% 
of C-allele carriers. These results suggest that the change from wild type to mutant type 
might contribute, at least in part, to the defective expression of TGFBR2 in SCLC patients, 
though further studies are needed to clarify the mechanisms responsible. 

5. Conclusion 

The present study identified reduced TGFBR2 gene expression levels in formalin-fixed, 
paraffin-embedded sections from most SCLC tumors examined, suggesting that this might 
contribute to the initiation and/or development of SCLC. Sequencing analysis also indicated 
that change of the wild-type C-allele to the mutant T-allele at c.1167 might contribute to the 
defective expression of TGFBR2 in SCLC patients. Another DNA variant with a frameshift 
mutation in the TGFBR2 poly(A)10 repeat, leading to MSI, was found in the coding region of 
the TGFBR2 gene, but this was not associated with TGFBR2 expression.  
These results suggest that defective expression of TGFBR2 might inactivate TGF-β signal 
transduction, leading to the loss of growth inhibition and acceleration of tumor formation, 
and that a C>T substitution at c.1167 might be partially responsible for this reduced 
expression of TGFBR2 in SCLC. 
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