15,884 research outputs found

    Detecting interactions between dark matter and photons at high energy e+ee^+e^- colliders

    Full text link
    We investigate the sensitivity to the effective operators describing interactions between dark matter particles and photons at future high energy e+ee^+e^- colliders via the \gamma+ \slashed{E} channel. Such operators could be useful to interpret the potential gamma-ray line signature observed by the Fermi-LAT. We find that these operators can be further tested at e+ee^+ e^- colliders by using either unpolarized or polarized beams. We also derive a general unitarity condition for 2n2 \to n processes and apply it to the dark matter production process e+eχχγe^+e^-\to\chi\chi\gamma.Comment: 13 pages, 8 figure

    Style Transfer in Text: Exploration and Evaluation

    Full text link
    Style transfer is an important problem in natural language processing (NLP). However, the progress in language style transfer is lagged behind other domains, such as computer vision, mainly because of the lack of parallel data and principle evaluation metrics. In this paper, we propose to learn style transfer with non-parallel data. We explore two models to achieve this goal, and the key idea behind the proposed models is to learn separate content representations and style representations using adversarial networks. We also propose novel evaluation metrics which measure two aspects of style transfer: transfer strength and content preservation. We access our models and the evaluation metrics on two tasks: paper-news title transfer, and positive-negative review transfer. Results show that the proposed content preservation metric is highly correlate to human judgments, and the proposed models are able to generate sentences with higher style transfer strength and similar content preservation score comparing to auto-encoder.Comment: To appear in AAAI-1

    Fast Low-rank Representation based Spatial Pyramid Matching for Image Classification

    Full text link
    Spatial Pyramid Matching (SPM) and its variants have achieved a lot of success in image classification. The main difference among them is their encoding schemes. For example, ScSPM incorporates Sparse Code (SC) instead of Vector Quantization (VQ) into the framework of SPM. Although the methods achieve a higher recognition rate than the traditional SPM, they consume more time to encode the local descriptors extracted from the image. In this paper, we propose using Low Rank Representation (LRR) to encode the descriptors under the framework of SPM. Different from SC, LRR considers the group effect among data points instead of sparsity. Benefiting from this property, the proposed method (i.e., LrrSPM) can offer a better performance. To further improve the generalizability and robustness, we reformulate the rank-minimization problem as a truncated projection problem. Extensive experimental studies show that LrrSPM is more efficient than its counterparts (e.g., ScSPM) while achieving competitive recognition rates on nine image data sets.Comment: accepted into knowledge based systems, 201

    Mask-guided Style Transfer Network for Purifying Real Images

    Full text link
    Recently, the progress of learning-by-synthesis has proposed a training model for synthetic images, which can effectively reduce the cost of human and material resources. However, due to the different distribution of synthetic images compared with real images, the desired performance cannot be achieved. To solve this problem, the previous method learned a model to improve the realism of the synthetic images. Different from the previous methods, this paper try to purify real image by extracting discriminative and robust features to convert outdoor real images to indoor synthetic images. In this paper, we first introduce the segmentation masks to construct RGB-mask pairs as inputs, then we design a mask-guided style transfer network to learn style features separately from the attention and bkgd(background) regions and learn content features from full and attention region. Moreover, we propose a novel region-level task-guided loss to restrain the features learnt from style and content. Experiments were performed using mixed studies (qualitative and quantitative) methods to demonstrate the possibility of purifying real images in complex directions. We evaluate the proposed method on various public datasets, including LPW, COCO and MPIIGaze. Experimental results show that the proposed method is effective and achieves the state-of-the-art results.Comment: arXiv admin note: substantial text overlap with arXiv:1903.0582

    3D Dynamic Motion Planning for Robot-Assisted Cannula Flexible Needle Insertion into Soft Tissue

    Get PDF
    In robot-assisted needle-based medical procedures, insertion motion planning is a crucial aspect. 3D dynamic motion planning for a cannula flexible needle is challenging with regard to the nonholonomic motion of the needle tip, the presence of anatomic obstacles or sensitive organs in the needle path, as well as uncertainties due to the dynamic environment caused by the movements and deformations of the organs. The kinematics of the cannula flexible needle is calculated in this paper. Based on a rapid and robust static motion planning algorithm, referred to as greedy heuristic and reachability-guided rapidly-exploring random trees, a 3D dynamic motion planner is developed by using replanning. Aiming at the large detour problem, the convergence problem and the accuracy problem that replanning encounters, three novel strategies are proposed and integrated into the conventional replanning algorithm. Comparisons are made between algorithms with and without the strategies to verify their validity. Simulations showed that the proposed algorithm can overcome the above-noted problems to realize real-time replanning in a 3D dynamic environment, which is appropriate for intraoperative planning. © 2016 Author

    Smartphone based public participant emergency rescue information platform for earthquake zone – “E-Explorer”

    Get PDF
    Devastating earthquake can often cause the disaster area communication interrupt, traffic paralysis, etc. It is difficult for the emergency rescue force to get the disaster area in time. Therefore, active local participation in the quake-hit areas to aid each other appeals extremely important. The paper is based on a self-developed smartphone software called “E-Explorer”, study its significance and its working methods to help the public participate in the earthquake rescue actively when external network are cut off. “E-Explorer” can help deliver important information for personal survival, let rescue workers locate the positions of survivors trapped, creating an efficient self-help and mutual rescue platform for the earthquake-stricken people
    corecore