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Abstract

In robot-assisted needle-based medical procedures,
insertion motion planning is a crucial aspect. 3D dynamic
motion planning for a cannula flexible needle is challenging
with regard to the nonholonomic motion of the needle tip,
the presence of anatomic obstacles or sensitive organs in
the needle path, as well as uncertainties due to the dynamic
environment caused by the movements and deformations
of the organs. The kinematics of the cannula flexible needle
is calculated in this paper. Based on a rapid and robust
static motion planning algorithm, referred to as greedy
heuristic and reachability-guided rapidly-exploring
random trees, a 3D dynamic motion planner is developed
by using replanning. Aiming at the large detour problem,
the convergence problem and the accuracy problem that
replanning encounters, three novel strategies are proposed
and integrated into the conventional replanning algorithm.
Comparisons are made between algorithms with and
without the strategies to verify their validity. Simulations
showed that the proposed algorithm can overcome the
above-noted problems to realize real-time replanning in a
3D dynamic environment, which is appropriate for
intraoperative planning.

Keywords Dynamic Motion Planning, Rapidly-exploring
Random Tree, Cannula Flexible Needle, Robot-assisted
Surgery

1. Introduction

In minimally invasive surgeries, needle insertion is likely
one of the most popular procedures, applied in tissue
biopsies and radioactive brachytherapies for cancers.
However, targeting is a challenge when targets are sur‐
rounded by anatomic obstacles or sensitive organs that
must be avoided. Traditional rigid needles are not useful
for this task. Therefore, a bevel tip flexible needle is
proposed for overcoming this problem [1]. The conven‐
tional flexible needle is supposed to be flexible to a degree
that it can bend inside tissue, due to lateral force being
applied on the bevel tip at insertion. However, it still has
some drawbacks: firstly, the curvature of the trajectory for
a needle is supposed to be fixed in a tissue and cannot
rectify its path once it has deviated. Secondly, it is difficult
to precisely control the orientation of the bevel tip at
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rotation, due to the torsional friction between the needle
shaft and tissue. To overcome the first drawback, Minhas
and Majewicz utilized the duty-cycling of the spinning
motor to generate a series of curvatures [2, 3]. Datla et al.
proposed an active, flexible needle that takes advantage of
the characteristics of shape memory alloys (SMA), which
can also generate different curvatures by supplying
different electric currents to the SMA actuators [4-6].
However, the second drawback remains in place. We have
been developing a cannula flexible needle, composed of a
flexible cannula and a flexible bevel-tip stylet, as shown in
Fig.1. It can overcome both drawbacks of the conventional
bevel tip flexible needle mentioned above. Firstly, it can
generate a series of curvatures of trajectories by the
different the length d of the stylet out of the cannula.
Secondly, it can improve the rotation precision of the bevel
tip, because the cannula separates the stylet and the tissue,
thereby reducing torsional friction.

Figure 1. Schematic of a cannula flexible needle

Motion planning of the cannula flexible needle in the soft
tissue is challenging due to the nonholonomic motion of the
needle and the presence of anatomic obstacles and sensitive
organs [7]. It is even complicated in a dynamic environ‐
ment, with uncertainties present due to errors in needle tip
positioning and needle modelling, the inhomogeneity and
deformation of tissue and the physiological movement of
organs [8]. All of these disturbances and movements may
cause the needle to deviate from its intended path, which
can have fatal consequences.

Motion planning for the conventional bevel tip flexible
needle has been extensively studied using different
approaches, which can be used as references for the cannula
flexible needle. Duindam et al. proposed motion planning
using discretization of the control space in a 3D environ‐
ment with obstacles and formulated the motion planning
problem as a nonlinear optimization problem [7]. Howev‐
er, this planning is applied for a static environment.
Alterovitz et al. depicted the motion planning problem as
a Markov decision process, using a discretization of the
state space to maximize the probability of successfully
reaching the target in a 2D environment [8]. Park et al.
proposed a path-of-probability algorithm to optimize the
paths by computing the probability density function [9].
Both of the above-noted approaches considered the
uncertainty regarding the needle’s response to control
using dynamic programming; however, these approaches
are applied for a quasi-dynamic environment, i.e., there is
no actual disturbance or movement of the environment and
the uncertainty is not actually formulated or updated to the

planning in question. All of the above approaches adopted
a mathematical computation (MC) method, which config‐
ures the problem as an optimization problem with an
objective function and then computes the numerical
optimal solution. This method generally has a computa‐
tional expense and may suffer from convergence; therefore,
such methods are generally used for preoperative plan‐
ning, but are not appropriate for intraoperative planning.

Another method for considering uncertainty, particularly
in the case of tissue deformation is the finite element mesh
(FEM) method. Alterovitz et al. used a FEM to compute soft
tissue deformations and combined it with a MC method to
find a locally optimal trajectory [10]. Patil et al. proposed
motion planning for highly deformable environments,
using the FEM method combined with a sampling-based
algorithm [11]. However, the efficiency of the FEM method
depends significantly on how accurately the mesh repre‐
sents the real tissue. Moreover, both of these studies did not
consider many other uncertainties caused by the surround‐
ing environment. Moreover, the FEM method is also time-
consuming. Therefore, it is generally used in preoperative
motion planning. However, if we consider real-time
dynamic motion planning, it may not be appropriate.

A third important method for flexible needle motion
planning is a sampling-based method such as the proba‐
bilistic roadmaps (PRM) or the rapidly-exploring random
trees (RRT) method. Some motion planning has been
developed based on PRM in a static environment or a quasi-
dynamic environment [12, 13]. Ever since Xu et al. first
applied a RRT-based method to search for valid needle
paths in a 3D environment with obstacles, the RRT algo‐
rithm has been commonly used in flexible needle motion
planning [14]. However, these studies were only consid‐
ered in a static environment. Patil et al. utilized improved
RRTs called reachability-guided RRTs (RG-RRTs) and
achieved orders of magnitude speed-ups compared to
previous approaches, and relaxed the constraint of con‐
stant-curvature needle trajectories by relying on duty-
cycling to realize bounded-curvature needle trajectories.
This enabled the RRT method to be appropriate for
dynamic intraoperative motion planning [15]. Caborni et
al. proposed risk-based path planning for a steerable
flexible probe based on the RG-RRTs [16]. In terms of path
replanning, Patil et al. proposed a rapid replanning
algorithm based on RG-RRTs and conducted experimental
evaluations to show its validity [17]. Vrooijink et al. also
developed a closed-loop replanning algorithm based on the
RG-RRTs for a 3D non-static environment using 2D
ultrasound images [18]. Both of these studies considered
the uncertainty arising from tissue deformations, actuation
errors and noisy sensing; however, they did not consider
the significant displacement of targets and obstacles caused
by physiological movement, which may cause the needle
to fatally deviate from the planned path. Bernardes et al.
presented a fast intraoperative replanning algorithm that
considers disturbances including the movements of
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obstacles and a target based on RRTs in both 2D and 3D
environments; however, target movement was limited in
2D, despite having the potential to move in 3D [19, 20].

In summary, the advantage of the RRT method is that it is
very fast (in milliseconds), easy to implement and proba‐
bilistic to complete, which is suitable for intraoperative
planning. However, for dynamic replanning, all replan‐
ning algorithms may suffer from the large detour problem,
convergence problem and/or accuracy problem. The large
detour problem may be caused by the unpredicted move‐
ment of the obstacles and/or target; the convergence
problem may be caused by nonholonomic motion and/or
the minimum bending radius of the needle in the tissue,
and the potential for the path adjustment becomes weaker
when the needle gets close to the target; the accuracy
problem may be caused by the termination conditions
when the convergence problem occurs.

In this paper, we firstly calculate the kinematics of the
cannula flexible needle, then introduce a fast motion
planning algorithm based on RRT for a static environment
(preoperative operation) for the cannula flexible needle in
our previous work. Based on the proposed static motion
planning algorithm, we propose dynamic (intraoperative
operation) motion planning using replanning, taking into
account any uncertainty caused by errors in needle tip
positioning, the approximation of needle modelling, the
inhomogeneity and deformation of tissue and physiologi‐
cal movement of the organs. Aiming at the large detour
problem, the convergence problem and the accuracy
problem that replanning encounters, we propose three
novel strategies integrated into the intraoperative path
replanning algorithm for overcoming these problems.

2. Kinematic Analysis of the Cannula Flexible Needle

Different from conventional bevel tip needles (with two
DOFs: insertion and rotation) [1], the proposed cannula
flexible needle has three DOFs: two translations u1, u2 for
the cannula and the stylet, respectively, and rotation u3 for
the stylet,u1, u2 and u3 can be input separately or simulta‐
neously (see Fig.1).

2.1 Trajectory form analysis

We assume that the cannula flexible needle is pliably
flexible and torsionally stiff, i.e., the needle shaft follows
the needle tip, performing an approximate circular arc in
the tissue when bending, while needle tip rotates at the
same angle as the base [1, 7]. Similar to the conventional
bevel tip flexible needles, it will be bent against the bevelled
side when inserted into the tissue, due to the lateral force.
The rotation of the stylet decides the orientation of the
needle bending, so that the needle can achieve various
paths in 3D by combining the three inputs.

1. Arc-based path: the radius of the needle path can vary
according to the length d of the stylet which remains

out of the cannula (see Fig.1). The more the stylet is
able to get out of the cannula, the smaller radius the
trajectory will receive. Thus, the relative velocity
between u1 and u2 changes the radius of the path, and
u3 changes the orientation of the bending. As u1 and u2

are generally input simultaneously and with the same
velocity, we can denote them as u12. If we input u12 and
u3 in a time-sharing way, the needle will generate an
arc-based path (see Fig.2a). This method does not
generate all radii of the path. The path will be in a range
with the minimum bending radius rmin and the maxi‐
mum bending radius rmax (as shown in Fig.3a). Both rmin

and rmax are not only related to d, but also to the
mechanical properties of the needle and the tissue. For
the paths with a bending radius larger than rmax, we can
also apply the duty-cycling method [2, 3]. By using a
combination of both methods, the control expense is
saved to some extent. The entire workspace is shown
in Fig.3b.

2. Helix-based path: if we input u12 and u3 simultaneous‐
ly, and the speed of u3 is much slower than that of u12,
the needle will generate a helix-based path (see Fig.2b).

3. Linear path: if we input u12 and u3 simultaneously,
however, the speed of u3 will be much faster than that
of u12, and the needle will generate a linear path (see
Fig.2c).

 

 

a) Arc-basedd path.                 

c) Li

 

                         b)

inear path. 

) Helix-based pat

 

th. 

 

Figure 2. Forms of path

 

 

a) Workspace without duty cycling.                           b) Workspace with duty cycling. 

  
Figure 3. Workspace of the needle

In this paper, we adopt the arc-based and linear paths
rather than the helix-based path, because they are easier to
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control. The helix-based path, in contrast, is difficult to
formulate and control and may also cause more trauma to
biological organs, because its winding approach may
lengthen the path.

2.2 Kinematic model

The kinematic model of the cannula flexible needle is
formulated as shown in Fig.4. In the world frame Ψw, the
configuration of the needle tip frame Ψn can be described
compactly by a 4 x 4 homogeneous transformation matrix:

(3)
0 1
wn wn

wn

é ù
= Îê ú
ë û

R p
g SE (1)

where Rwn∈SO(3) and pwn∈ℝ3 are the rotation matrix and
the position of frame Ψn relative to the frame Ψw, respec‐
tively.

Figure 4. Kinematic model of the cannula flexible needle

In frame Ψn, the instantaneous linear velocity is
v = 0 0 u12

T, angular velocity is ω = u12 / ri 0 u3
T, where

r is the radius of the path and the twist ξ
^
∈ se(3) is formu‐

lated as:

3
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where ^ is the wedge operator for forming a matrix in se(3)
out of a given vector in ℝ6.

Then, the homogeneous transformation matrix can be
formulated in exponential form as:

ˆ( ) (0)exp( )wn wnt t=g g x (3)

where gwn(0) is the initial configuration, which is the
configuration of the needle (frame Ψn) in frame Ψw before
insertion and t is the execution time. Additional details can
be found in [1].

However, different to other existing kinematics of the
flexible needle [1, 7, 9, 11-20], because the planning algo‐
rithm considers the insertion pose of the needle, we have
to add an insertion configuration to the kinematics:

ˆ( ) (0) exp( )wn wn int t=g g g x (4)

where gin is the insertion configuration.

The entire path can be discretized by a few segments. Let
gi(ti)=exp(ξ̂ti) represent the transformation matrix of the ith
segment, then the forward kinematics after N segments of
execution is formulated as:

1
( ) (0) ( )

N

wn wn in i i
i

T t
=

= Õg g g g (5)

where ti is the execution time of the ith segment, T is the

total execution time of the whole path, T =∑
i=1

n
ti; gwn(0) is the

initial configuration and gin is the insertion configuration.

To simplify the calculation, we make the Ψn frame coincide
with the Ψw frame initially (see Fig.5). Thus, gwn(0)=I4, where
I4 is a unit matrix with 4 x 4. The insertion pose can be
regarded as frame Ψn rotating α0 around axis Zn, then
rotating β0 around axis Yn; hence, configurations for the
insertion configuration can be obtained by:

0 0( , ) ( , )in n nRot Z Rot Ya b=g (6)

Figure 5. Insertion configuration of the needle
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3. Static Motion Planning Algorithm

We utilized the RRT method for the static motion planning,
combined with the greedy heuristic method and reachable
guided strategies, known as greedy heuristic and reacha‐
bility guided rapidly-exploring random trees (GHRG-
RRTs). We adopted variable but bounded curvatures for
the needle paths and also took account of linear segments
and relaxation of insertion orientations where the trajecto‐
ries were concerned. The superiority of this algorithm is
attested to in our previous work [21, 22].

3.1 Outline of GHRG-RRTs algorithm

The outline of the GHRG-RRTs algorithm is shown in
Algorithm 1. Further details can be obtained in [22].

 

Algorithm 1: GHRG-RRTs (qinit, qgoal, Q).

1: T ←InitTree(qinit);P ← InitPath(qinit);

2: if LinearCheck(qinit, qgoal, Q) 

3:U ←SolveLine(qinit, qgoal) 

4:P ←AchivePath(T, U,qgoal) 

5: end if 

6: U ← SolveCurve(T.ginit, qgoal) 

7: if U.r≥rmin & CollisionFree(U, Q) 

8:P ←AchivePath(T, U,qgoal) 

9: end if 

10: while (n <max_path) & (i<max_iteration) 

11: qrand ← RandomNode(); flag ← false 

12: if LinearCheck(qinit,qrand) 

13: U ← SolveLine(qinit, qrand) 

14: T ← ExtendTree (T, U, qrand) 

15: U ← SolveCurve(T.grand, qgoal) 

16: if U.r≥ rmin & CollisionFree(U, Q) 

17: P ← GetPath (T, U,qgoal); flag ← true 

18: end if 

19: end if 

20: U ← SolveCurve(T.ginit, qrand) 

21: if U.r≥ rmin & CollisionFree(U, Q) 

22: T ← ExtendTree(T, U, qrand) 

23: end if 

24: U ← SolveCurve(T.grand, qgoal) 

25: if U.r≥ rmin & CollisionFree(U, Q) 

26: P ← GetPath(T,U,qgoal); flag ← true 

27: end if 

Get a linear path

Get a curve path

Get a linear tree

Get a path

Get a curve tree

Get a path

28: if flag == false

29: qproper ← FindProperNode(T,qrand,ρ) 

30: U ← SolveCurve(T.gproper, qrand) 

31: if U.r≥ rmin & CollisionFree(U, Q) 

32: T ← ExtendTree(T,U,qrand) 

33: U ← SolveCurve(T.grand, qgoal) 

34: if U.r≥ rmin & CollisionFree(U, Q) 

35: P ← GetPath(T,U,qgoal) 

36: end if 

37: end if 

38: end while 

39: popt ← Optimization(P) 

40: returnpopt 

GetPath(T, U,qgoal) 

1: T ←ExtendTree(T, U,qgoal) 

2: p ← ExtractPath(T) 

3: P.add_path(p) 

4: returnP 

ExtendTree(T,U,q) 

1: g ← GetConfig(U, q) 

2: T. add_vertex(q) 

3: T. add_edge(q,g) 

4: returnT 

 

  

Extend a tree

Get a path

3.2 Optimization function

Among the candidate solutions, all of which have already
met the required constraints, the optimal trajectory can be
chosen based on a cost function. The objectives of the
optimization take consideration of minimizing tissue
trauma and the danger of the path, as well as the path shape
evaluation.

1 2 3min ( , ) min{ }F T L D Sa a a= + +u (7)

where L is the length of path L =∑
i=1

N
li, D is the degree of

danger in the path, D=min(Di), where Di is the distance
between the path and the ith obstacle, S is the curve

evaluation of the path and S =∑
i=1

N rmin
ri

 ; α1-α3 are the weight‐

ed coefficients. The result of the function is the compre‐
hensive evaluation of the optimal path.

4. Dynamic Motion Planning Algorithm

Prior to surgery, we first used the GHRG-RRTs in preop‐
erative planning to seek out an optimal path based on
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medical imaging (e.g., ultrasound, CT or MRI). During the
surgery, we used online medical imaging to update the
configurations of both the needle and the environment. We
then used a fast intraoperative replanning algorithm to
reform and adjust the path in order to realize a real-time
closed-loop control up to the point where the needle
reaches the target.

We acquired the optimal path using the preoperative
motion planning algorithm. However, disturbances and
uncertainties like model inaccuracy, tissue deformation
and inhomogeneity, needle tip positioning errors, physio‐
logical movement, etc., could still deviate the needle from
its intended path. Moreover, movement on behalf of the
target and obstacles can render the planned path infeasible,
leading to a collision with obstacles or misplacement of the
target. To overcome this, we adopted the replanning idea
[17], here referred to as conventional motion replanning
(CMR), the outline of which is depicted in Algorithm 2. We
attained the current state by using a 3D medical imaging
system for replanning and execution in each cycle, in order
to systematically rectify the path until the needle tip reaches
target region δ.

 

Algorithm 2: CMR (gtip_now, qgoal_now, Qnow). 

1: T ← InitTree(gtip_now); P ←Pplanned 

2: while the distance between the needle tip and the goal d>δ 

3: P ←Modified_GHRG (gtip_now, qgoal_now, Qnow) 

4: return P 

5: end while 

 

  where the modified GHRG-RRTs is the routine of lines 6-40
of Algorithm 1. Once the needle has been inserted into the
tissue, the orientation at the needle tip can no longer be
changed. Therefore, the linear path acquisition routine
(lines 1-5 of Algorithm 1) are no longer appropriate for
replanning.

This algorithm appears reasonable; however, it generally
encounters some intractable problems. Firstly, this algo‐
rithm makes each cycle of replanning independent and
without learning from former cycles, because of the
stochastic property of the RRT algorithm, the blind replan‐
ning may cause a large detour in the path when the
environment changes (see Fig.6a). Secondly, it may cause
the convergence problem, i.e., as the flexibility of the needle
is minimized due to nonholonomic constraints, whenever
the needle gets close to the target, it is likely that the target
will be unreachable because of its movement or other
uncertain errors. Furthermore, the replanning algorithm
will replan a circle-like path to make the target reachable
again and as a result, the needle will detour in a loop
without ever reaching the target (see Fig.6b). Therefore, the
CMR algorithm is not suitable in terms of the significant
movement of obstacles and the target.

To overcome these problems, we propose an improved
motion replanning (IMR) algorithm with two strategies,
i.e., an old point tracking strategy (OPTS) and an extreme
trend extension strategy (ETES). OPTS tracks the old point
in the old path in order to learn from former planning in
order to overcome the large detour problem. ETES bends
in an extreme manner when the needle gets close enough
to a target that is unreachable to overcome the convergence
problem. The programming of the IMR-1 is depicted in
Algorithm 3.

OPTS (line 3-6 of IMR-1) tracks and utilizes the old con‐
necting points qi in the former path to replan a new path. If
it cannot generate a new path using the old points, it will
replan a new path by using a modified GHRG-RRTs. In this
way, after several cycles of iteration, it will find a relatively
stable path that is immune to changes in the environment
to some extent, because it has learned from previous
planning. This strategy overcomes the large detour
problem.

 

a) Large detour problem.                           b) Convergence problem. 

  Figure 6. Problems of the CMR
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Algorithm 3: IMR-1 (gtip_now, qgoal_now,Pplanned,Qnow). 

1: T ← InitTree(gtip_now);P ← Pplanned 

2: if P.length>s1 

3: for all qi∈Pplanned 

4: U ← SolveCurve(T, qi) 

5:T ← ExtendTree(T,U, qi) 

6: end for 

7: if all radii of T, ri≥rmin & CollisionFree(T, Qnow) 

8: P ← GetPath (T,qgoal_now) 

9: else 

10:P ← Modified_GHRG (gtip_now, qgoal_now, Qnow) 

11: end if 

12: else if P.length≥Δs 

13: U ← SolveCurve(T.gtip_now, qgoal_now) 

14: if CollisionFree(U, Qnow) 

15: if U.r<rmin 

16: U.r ← rmin 

17: end if 

18: qnext ← NextExtend (T.gtip_now,U.r,Δs) 

19: if ||qnext-qgoal_now||<||qtip_now-qgoal_now|| 

20: P ← GetPath(T,qextend) 

21: end if 

22: end if 

23: end if 

 

  

Track the old points

Extend in an extreme 

ETES (lines 14-21 of IMR-1) prevents the planner from
generating a circle-like path due to the failure of reachabil‐
ity. If the needle gets close enough to a target that is
unreachable (the radius of the last segment r is less than the
minimum radius rmin), instead of replanning a new path, it
will try its best to extend the needle to the target with the
minimum radius until it gets to the closest position to the
target. This strategy overcomes the convergence problem.

We performed different strategies according to different
conditions. Here, s1 is the switch between the proposed
replanning strategies and ∆s is the length of the insertion
we executed in each cycle. If the path was longer than s1,
the OPTS was performed; if the length of the path was
between s1 and ∆s, the ETES was performed up to the point
where the needle reaches the nearest position to the target.

Although the problems noted above were well solved, the
ETES introduces another problem to the planning. Since we
force the needle to extend to the target in an extreme
manner, it may cause a large error (sometimes above
10mm), which is intolerant for clinical surgery. To over‐
come the complication, we propose the hardest goal
tracking strategy (HGTS) and integrated it to the IMR-1 to
form IMR-2, as depicted in Algorithm 4.

We found that the failure of reachability was badly
influenced by movement of the target. Among all positions
that the target has undergone, there is the hardest one to
reach, which is contained in the path with the smallest
radius. We called this the hardest goal. Theoretically, if the
needle can achieve the hardest goal, it will be less difficult
to achieve other positions linked to the goal. We therefore
used the HGTS (lines 7-18 of IMR-2) to track the hardest

goal, regardless of the target movement, until the length of
path was shorter than s2.

Algorithm 4:IMR-2 (gtip_now, qgoal_now,Pplanned,Qnow).

1: T ← InitTree(gtip_now); P ← Pplanned

2: if P.length>s2 

3: for all qi∈Pplanned 

4: U ← SolveCurve(T, qi) 

5:T ← ExtendTree(T,U, qi) 

6: end for 

7: if all radii of T, ri≥rmin & CollisionFree(T, Qnow) 

8: Pgoal_now ← GetPath(T,qgoal_now) 

9: Pgoal_old ← GetPath(T,qgoal_old) 

10: else 

11: Pgoal_now ← Modified_GHRG (gtip_now, qgoal_now, Qnow) 

12: Pgoal_old ← Modified_GHRG (gtip_now, qgoal_old, Qnow) 

13: end if 

14: if the radius of the last segment of the two paths, respectively, rgoal_now< rgoal_old 

15: P ← Pgoal_now 

16: else 

17: P ← Pgoal_old 

18: end if 

19: else if P.length≥Δs 

20: U ← SolveCurve(T.gtip_now, qgoal_now) 

21: if CollisionFree(U, Qnow) 

22: if U.r<rmin 

23: U.r←rmin 

24: end if 

25: qnext ← NextExtend (T.gtip_now,U.r,Δs) 

26: if ||qnext-qgoal_now||< ||qtip_now-qgoal_now|| 

27: P← GetPath (T,qextend) 

28: end if 

29: end if 

30: end if 

Track the old points

Track the hardest goal

Extend in an extreme trend

5. Simulation and Discussion

5.1 Settings for simulation

We simulated the motion planner in MATLAB® (ver. 7.8.0,
R2009a; MathWorks, Natick, MA) on a 2.5 GHz 4-core
Intel® i5™ PC. We adopted an environment similar to [14],
modelling it as a cubical region at 200mm along each axis.
Six spherical obstacles, each with a radius of 20mm
represent the pubic arch, the urethra and the penile bulb
around the prostate. The goal is set to (0 0 195), in millimetre
(see Fig.8a). We set the minimum radius rmin=50mm and the
specific metric at ρ=10mm (in line 29 of Algorithm 1). The
maximum number of the candidate paths was set to 100
and the maximum number of iterations to 10 000. In order
to speed up computation, we assumed there was a rela‐
tively safe margin m (here we set m=3mm) around the
obstacle; as long as the needle did not puncture the safe
margin, it would never puncture the obstacle; thus, the
surgery was safe. The radius of the obstacle should also be
enlarged by safe margin m when planning to make it safe.
As such, there was no need to care about the exact distance
between the needle and the obstacles, as long as the surgery
was sufficiently safe. Therefore, we could disregard the
second term in (7) by setting α2=0. Other weighted coeffi‐
cients were set to α1=α3=1, as we equally considered both of
the remaining sub-objective functions. These settings were
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applied to both preoperative planning and intraoperative
replanning.

For replanning, we added some disturbances and move‐
ments. The disturbances such as model inaccuracy, tissue
deformation, tissue inhomogeneity and needle tip posi‐
tioning errors, were modelled as white noise and followed
normal distribution N~(μ, σ). We let μ=r and σ=r/10 mm to
the radii of the path, μ=0 and σ=1mm to the tip position and
μ=0 and σ=0.01 rad to the orientation of the needle tip.
Movement of the target and obstacles were modelled as
periodic sinusoidal motions in 3D, both with an amplitude
of 5mm and at a period of 60s and 5s, respectively.

As noted, since si(i=1,2) are the switch for the replanning
strategies and affect the validity of the planning, we need
to discuss them in detail. For IMR-1, s1 is the switch between
OPTS and ETES. Here we will track the old connecting
points along the planned path. The convergence problem
always occurs in the final segment, especially close to the
target. We thus have to place s1 before the convergence
problem occurs in the final segment. In order to attain
switch s1, we have to study where the convergence problem
generally occurs and how long the final segment of path is.
We simulated for 20 times of the Algorithm 2 (CMR) in the
specified environment. Among the 20 trials, the maximum
length of path occurring in the convergence problem was
30.73 mm; the minimum length of the final segment was
92.01 mm. Thus, s1 should be between 30.73 mm and 92.01
mm; to be safe, we let s1= 40~80 mm. Moreover, the con‐
vergence problem is also related to the environment and
the value of minimum radius rmin.

As for IMR-2, s2 is the switch between the first two strategies
(OPTS and HGTS) and the last one (ETES). The analysis for
IMR-2 is similar to that of IMR-1. We will perform the first
two strategies until the needle gets close to the target and
then perform the final strategy. However, the difference
from the IMR-1 is that we do not have to worry about the
convergence problem prior to releasing the HGTS, since the
hardest goal is fixed. The critical matter is when to release
the HGTS. If we release it too early, it will track the target
thereafter and the effectiveness will be no better than for
IMR-1; if we release it too late, the planning will have
limited opportunity to adjust the path to the current target.
Thus, the value of s2 for IMR-2 is neither too large nor too
small. In order to attain switch s2 for IMR-2, we simulated
each different value 20 times to observe its performance, as
is shown in Fig.7. From the figure, we can conclude that the
best performance for IMR-2 is at s2=10. Moreover, s2 not

only concerns the environment and rmin, but also target
movement.

Therefore, empirically, we set s1=50 mm and s2=10 mm for
IMR-1 and IMR-2, respectively. We also set the insertion
distance per cycle as ∆s = 1 mm. 
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Figure 7. Average errors of different values of s2

5.2 Simulation results and discussion

In order to verify the validity of each strategy, we compared
Algorithm 2 (CMR), Algorithm 3 (IMR-1) and Algorithm 4
(IMR-2). We performed 20 trials using the same target for
each algorithm. The validity of the OPTS and ETES is
obvious in the comparison of CMR and IMR-1, as shown in
Table 1. The validity of the HGTS is shown in the compar‐
ison of IMR-1 and IMR-2 (see Table 1). Table 1 shows that
some of the results in the 20 trials have the formation “mean
± standard deviation”.

The results show that CMR suffers from the large detour
problem, while the other algorithms avoid it. This reveals
that OPTS is effective in terms of the large detour problem.
CMR also suffers the convergence problem, while the other
algorithms avoid this, which reveals the ETES is effective
in terms of the convergence problem. Moreover, the time
for each cycle for CMR is much longer than that for the
other algorithms. This is because OPTS, which not only
learns from former cycles of replanning and renders the
path stable, but also enhances the cycling replanning speed.

On the other hand, from the comparison of IMR-1 and
IMR-2, it is clear that the accuracy of IMR-2 is much better
than that of IMR-1, which reveals the effectiveness of the
HGTS. The error of IMR-2 is within 2mm, which meets the
needs of clinical requirements. From the length of the actual
path, we can see that IMR-2 is much more stable than

Algorithms
Large detour problem

(times)
Convergence problem

(times)
Error (mm)

Time for each cycle
(ms)

Length of optimal
path (mm)

Length of actual
path (mm)

CMR 18 16 / 202.6±101.1

214.5±5.6

/

IMR-1 0 0 7.77±4.15 1.6±11.4 228.6±18.2

IMR-2 0 0 1.31±0.38 3.7±21.6 219.8±4.7

Table 1. Comparison of the three algorithms
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IMR-1. Although the replanning speed of IMR-2 is slightly
slower than that of IMR-1 due to adding the extra strategy
of HGTS, it is still in milliseconds (see the column “Time
for each cycle” in Table 1), which is fast enough for
intraoperative replanning.

We also obtained one of the simulation results and com‐
pared it with the result of the simulation without the
replanning. The course of simulation is shown in Fig.8. The
original optimal path, the executed path, the ongoing/
adjusted path and the path added with disturbances and
without replanning or adjusting are depicted in the figure.
The final errors were 0.75 mm and 43.15 mm for the
replanning and without replanning paths, respectively.

In order to verify the robustness of the proposed algorithm
(IMR-2), we also performed simulation for different goals.
We randomly set two more goals as G1 (5 20 190) and G2

(10 -20 185), both in millimetre, and simulated each goal 20
times. The results are as shown in Table 2 and have the
formation “mean ± standard deviation”.

From Table 2, we can see that the large detour or conver‐
gence problem did not occur, the error is within 2mm and
speed remains high. As such, the conclusion can be drawn
that the proposed algorithm has strong robustness.

6. Conclusion

In this work, we firstly calculated the kinematics for the
cannula flexible needle. Based on the proposed RGHG-
RRTs algorithm for static motion planning in our previous
work, we propose a 3D dynamic motion planning algo‐
rithm for intraoperative surgery. We also propose three
novel strategies to be integrated in the conventional

IMR-2
Large detour problem

(times)
Convergence problem

(times)
Error (mm)

Time for each cycle
(ms)

Length of optimal
path (mm)

Length of actual
path (mm)

G1 0 0 1.56±0.53 2.5±18.3 204.9±6.1 208.2±8.7

G2 0 0 1.47±0.37 3.3±22.1 197.1±5.2 199.0±4.2

Table 2. The performance of the IMR-2 algorithm
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  Figure 8. Simulation result of Algorithm 4
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replanning algorithm in order to improve it. By comparing
the CMR, the IMR-1 and the IMR-2 algorithms, we can
conclude that the proposed OPTS, ETES and HGTS are
extremely effective for addressing the large detour prob‐
lem, the convergence problem and accuracy problem,
respectively. Moreover, the OPTS also benefits for the
replanning speed of a cycle. Finally, we performed simu‐
lations for different goals. The results revealed the validity
and robustness of the proposed replanning algorithm.

In future, we will integrate our planning with a real-time
feedback controller to carry out experiments on the
phantom tissue.
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