1,231 research outputs found

    Genetically engineered pre-microRNA-34a prodrug suppresses orthotopic osteosarcoma xenograft tumor growth via the induction of apoptosis and cell cycle arrest.

    Get PDF
    Osteosarcoma (OS) is the most common primary malignant bone tumor in children, and microRNA-34a (miR-34a) replacement therapy represents a new treatment strategy. This study was to define the effectiveness and safety profiles of a novel bioengineered miR-34a prodrug in orthotopic OS xenograft tumor mouse model. Highly purified pre-miR-34a prodrug significantly inhibited the proliferation of human 143B and MG-63 cells in a dose dependent manner and to much greater degrees than controls, which was attributed to induction of apoptosis and G2 cell cycle arrest. Inhibition of OS cell growth and invasion were associated with release of high levels of mature miR-34a from pre-miR-34a prodrug and consequently reduction of protein levels of many miR-34a target genes including SIRT1, BCL2, c-MET, and CDK6. Furthermore, intravenous administration of in vivo-jetPEI formulated miR-34a prodrug significantly reduced OS tumor growth in orthotopic xenograft mouse models. In addition, mouse blood chemistry profiles indicated that therapeutic doses of bioengineered miR-34a prodrug were well tolerated in these animals. The results demonstrated that bioengineered miR-34a prodrug was effective to control OS tumor growth which involved the induction of apoptosis and cell cycle arrest, supporting the development of bioengineered RNAs as a novel class of large molecule therapeutic agents

    Arbitrarily primed sequence-related amplified polymorphism (AP-SRAP)

    Get PDF
    Sequence-related amplified polymorphism (SRAP) is a new-type molecular technique that targets coding sequences in the genome and results in a moderate number of co-dominant markers. Based on the SRAP program, the random primer combinations of SRAP, amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) were used as new primers in marker analysis. We defined this technique as arbitrarily primed sequence-related amplified polymorphism (AP-SRAP). Of 256 tested AP-SRAP primers, 37.6% primers produced polymorphic patterns from the DNA of one or more species, which showed that AP-SRAP is an effective method to screen markers. Additionally, 80 SRAP primers were used to screen markers in seven plant species (Chinese cabbage, Chinese kale, eggplant, pepper, cucumber, rose and lily), which indicated obvious polymorphism. The primers of AP-SRAP combine simply and reliably. It can overcome the limitation of the number of standard SRAP primers, make greater use of the supply of alternative primers, and potentially reduce laboratory costs. We expect that AP-SRAP may be of wide application in identity testing, population studies, linkage analysis and genome mapping.Keywords: Arbitrarily primed amplification, DNA markers, plantsAfrican Journal of Biotechnology Vol. 12(29), pp. 4588-459

    Mutation of SLC35D3 causes metabolic syndrome by impairing dopamine signaling in striatal D1 neurons

    Get PDF
    We thank Dr. Ya-Qin Feng from Shanxi Medical University, Dr. Tian-Yun Gao from Nanjing University and Dr. Yan-Hong Xue from Institute of Biophysics (CAS) for technical assistance in this study. We are very thankful to Drs. Richard T. Swank and Xiao-Jiang Li for their critical reading of this manuscript and invaluable advice. Funding: This work was partially supported by grants from National Basic Research Program of China (2013CB530605; 2014CB942803), from National Natural Science Foundation of China 1230046; 31071252; 81101182) and from Chinese Academy of Sciences (KSCX2-EW-R-05, KJZD-EW-L08). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Genetic Diversity and Genome-Wide Association Study of Major Ear Quantitative Traits Using High-Density SNPs in Maize

    Get PDF
    Kernel and ear traits are key components of grain yield in maize (Zea mays L.). Investigation of these traits would help to develop high-yield varieties in maize. Genome-wide association study (GWAS) uses the linkage disequilibrium (LD) in the whole genome to determine the genes affecting certain phenotype. In this study, five ear traits (kernel length and width, ear length and diameter, cob diameter) were investigated across multi-environments for 2 years. Combining with the genotype obtained from Maize SNP50 chip, genetic diversity and association mapping in a set of 292 inbred lines were performed. Results showed that maize lines were clustered into seven subgroups and a total of 20 SNPs were found to be associated with ear traits significantly (P < 3.95E-05). The candidate genes identified by GWAS mainly encoded ubiquitin-activation enzymes (GRMZM2G015287), carotenoid cleavage dioxygenase (GRMZM2G446858), MYB-CC type transfactor, and phosphate starvation response protein 3, and they were associated with kernel length (KL) and ear diameter (ED), respectively. Moreover, two novel genes corresponding to RNA processing and fructose metabolism were found. Further, the SNPs detected by GWAS were confirmed by meta-QTL analysis. These genes and SNPs identified in the study would offer essential information for yield-related genes clone and breeding program in maize

    Kaiso (ZBTB33) Downregulation by Mirna-181a Inhibits Cell Proliferation, Invasion, and the Epithelial–Mesenchymal Transition in Glioma Cells

    Get PDF
    Background/Aims: Kaiso (ZBTB33) expression is closely associated with the progression of many cancers and microRNA (miRNA) processing. MiR-181a plays critical roles in multiple cancers; however, its precise mechanisms in glioma have not been well clarified. The goal of this study was to evaluate the interaction between Kaiso and miR-181a in glioma. Methods: Quantitative real-time PCR (qRT-PCR) was performed to detect the levels of Kaiso and miR-181a in glioma tissues and cell lines. Cell proliferation, invasion, and the epithelial–mesenchymal transition (EMT) were evaluated to analyze the biological functions of miR-181a and Kaiso in glioma cells. The mRNA and protein levels of Kaiso were measured by qRT-PCR and western blotting, respectively. Meanwhile, luciferase assays were performed to validate Kaiso as a miR-181a target in glioma cells. Results: We found that the level of miR-181a was the lowest among miR-181a–d in glioma tissues and cell lines, and the low level of miR-181a was closely associated with the increased expression of Kaiso in glioma tissues. Moreover, transfection of miR-181a significantly inhibited the proliferation, invasion, and EMT of glioma cells, whereas knockdown of miR-181a had the opposite effect. Bioinformatics analysis predicted that Kaiso was a potential target gene of miR-181a, and the luciferase reporter assay demonstrated that miR-181a could directly target Kaiso. In addition, Kaiso silencing had similar effects as miR-181a overexpression in glioma cells, whereas overexpression of Kaiso in glioma cells partially reversed the inhibitory effects of the miR-181a mimic. Conclusionss: miR-181a inhibited the proliferation, invasion, and EMT of glioma cells by directly targeting and downregulating Kaiso expression

    Genome-wide characterization of phospholipase D family genes in allotetraploid peanut and its diploid progenitors revealed their crucial roles in growth and abiotic stress responses

    Get PDF
    Abiotic stresses such as cold, drought and salinity are the key environmental factors that limit the yield and quality of oil crop peanut. Phospholipase Ds (PLDs) are crucial hydrolyzing enzymes involved in lipid mediated signaling and have valuable functions in plant growth, development and stress tolerance. Here, 22, 22 and 46 PLD genes were identified in Arachis duranensis, Arachis ipaensis and Arachis hypogaea, respectively, and divided into α, β, γ, δ, ε, ζ and φ isoforms. Phylogenetic relationships, structural domains and molecular evolution proved the conservation of PLDs between allotetraploid peanut and its diploid progenitors. Almost each A. hypogaea PLD except for AhPLDα6B had a corresponding homolog in A. duranensis and A. ipaensis genomes. The expansion of Arachis PLD gene families were mainly attributed to segmental and tandem duplications under strong purifying selection. Functionally, the most proteins interacting with AhPLDs were crucial components of lipid metabolic pathways, in which ahy-miR3510, ahy-miR3513-3p and ahy-miR3516 might be hub regulators. Furthermore, plenty of cis-regulatory elements involved in plant growth and development, hormones and stress responses were identified. The tissue-specific transcription profiling revealed the broad and unique expression patterns of AhPLDs in various developmental stages. The qRT-PCR analysis indicated that most AhPLDs could be induced by specific or multiple abiotic stresses. Especially, AhPLDα3A, AhPLDα5A, AhPLDβ1A, AhPLDβ2A and AhPLDδ4A were highly up-regulated under all three abiotic stresses, whereas AhPLDα9A was neither expressed in 22 peanut tissues nor induced by any abiotic stresses. This genome-wide study provides a systematic analysis of the Arachis PLD gene families and valuable information for further functional study of candidate AhPLDs in peanut growth and abiotic stress responses

    The LAMOST Survey of Background Quasars in the Vicinity of the Andromeda and Triangulum Galaxies -- II. Results from the Commissioning Observations and the Pilot Surveys

    Full text link
    We present new quasars discovered in the vicinity of the Andromeda and Triangulum galaxies with the LAMOST during the 2010 and 2011 observational seasons. Quasar candidates are selected based on the available SDSS, KPNO 4 m telescope, XSTPS optical, and WISE near infrared photometric data. We present 509 new quasars discovered in a stripe of ~135 sq. deg from M31 to M33 along the Giant Stellar Stream in the 2011 pilot survey datasets, and also 17 new quasars discovered in an area of ~100 sq. deg that covers the central region and the southeastern halo of M31 in the 2010 commissioning datasets. These 526 new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to 3.2. They represent a significant increase of the number of identified quasars in the vicinity of M31 and M33. There are now 26, 62 and 139 known quasars in this region of the sky with i magnitudes brighter than 17.0, 17.5 and 18.0 respectively, of which 5, 20 and 75 are newly-discovered. These bright quasars provide an invaluable collection with which to probe the kinematics and chemistry of the ISM/IGM in the Local Group of galaxies. A total of 93 quasars are now known with locations within 2.5 deg of M31, of which 73 are newly discovered. Tens of quasars are now known to be located behind the Giant Stellar Stream, and hundreds behind the extended halo and its associated substructures of M31. The much enlarged sample of known quasars in the vicinity of M31 and M33 can potentially be utilized to construct a perfect astrometric reference frame to measure the minute PMs of M31 and M33, along with the PMs of substructures associated with the Local Group of galaxies. Those PMs are some of the most fundamental properties of the Local Group.Comment: 26 pages, 6 figures, AJ accepte

    The Chemopreventive Effects of Protandim: Modulation of p53 Mitochondrial Translocation and Apoptosis during Skin Carcinogenesis

    Get PDF
    Protandim, a well defined dietary combination of 5 well-established medicinal plants, is known to induce endogenous antioxidant enzymes, such as manganese superoxide dismutase (MnSOD). Our previous studies have shown through the induction of various antioxidant enzymes, products of oxidative damage can be decreased. In addition, we have shown that tumor multiplicity and incidence can be decreased through the dietary administration of Protandim in the two-stage skin carcinogenesis mouse model. It has been demonstrated that cell proliferation is accommodated by cell death during DMBA/TPA treatment in the two-stage skin carcinogenesis model. Therefore, we investigated the effects of the Protandim diet on apoptosis; and proposed a novel mechanism of chemoprevention utilized by the Protandim dietary combination. Interestingly, Protandim suppressed DMBA/TPA induced cutaneous apoptosis. Recently, more attention has been focused on transcription-independent mechanisms of the tumor suppressor, p53, that mediate apoptosis. It is known that cytoplasmic p53 rapidly translocates to the mitochondria in response to pro-apoptotic stress. Our results showed that Protandim suppressed the mitochondrial translocation of p53 and mitochondrial outer membrane proteins such as Bax. We examined the levels of p53 and MnSOD expression/activity in murine skin JB6 promotion sensitive (P+) and promotion-resistant (P-) epidermal cells. Interestingly, p53 was induced only in P+ cells, not P- cells; whereas MnSOD is highly expressed in P- cells when compared to P+ cells. In addition, wild-type p53 was transfected into JB6 P- cells. We found that the introduction of wild-type p53 promoted transformation in JB6 P- cells. Our results suggest that suppression of p53 and induction of MnSOD may play an important role in the tumor suppressive activity of Protandim
    corecore