11 research outputs found

    Quantum Cohesion Oscillation of Electron Ground State in Low Temperature Laser Plasma

    Get PDF
    The development of radically new technological and economically efficient methods for obtaining chemical products and for producing new materials with specific properties requires the study of physical and chemical processes proceeding at temperature of 10(exp 3) to 10(exp 4) K, temperature range of low temperature plasma. In our paper, by means of Wigner matrix of quantum statistical theory, a formula is derived for the energy of quantum coherent oscillation of electron ground state in laser plasma at low temperature. The collective behavior would be important in ion and ion-molecule reactions

    Multiphoton Process and Anomalous Potential of Cell Membrane by Laser Radiation

    Get PDF
    In this paper, by the use of quantum biology and quantum optics, the laser induced potential variation of cell membrane has been studied. Theoretically, we have found a method of calculating the monophoton and multiphoton processes in the formation of the anomalous potential of cell membrane. In contrast with the experimental results, our numerical result is in the same order. Therefore, we have found the possibility of cancer caused by the laser induced anomalous cell potential

    Evolutionary Analysis of Structural Protein Gene VP1 of Foot-and-Mouth Disease Virus Serotype Asia 1

    Get PDF
    Foot-and-mouth disease virus (FMDV) serotype Asia 1 was mostly endemic in Asia and then was responsible for economically important viral disease of cloven-hoofed animals, but the study on its selection and evolutionary process is comparatively rare. In this study, we characterized 377 isolates from Asia collected up until 2012, including four vaccine strains. Maximum likelihood analysis suggested that the strains circulating in Asia were classified into 8 different groups (groups I–VIII) or were unclassified (viruses collected before 2000). On the basis of divergence time analyses, we infer that the TMRCA of Asia 1 virus existed approximately 86.29 years ago. The result suggested that the virus had a high mutation rate (5.745 × 10−3 substitutions/site/year) in comparison to the other serotypes of FMDV VP1 gene. Furthermore, the structural protein VP1 was under lower selection pressure and the positive selection occurred at many sites, and four codons (positions 141, 146, 151, and 169) were located in known critical antigenic residues. The remaining sites were not located in known functional regions and were moderately conserved, and the reason for supporting all sites under positive selection remains to be elucidated because the power of these analyses was largely unknown

    Positive least energy solutions for coupled nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponent

    No full text
    \begin{cases} \displaystyle -\Delta u+\nu_{1}u=\mu_{1}\bigg(\frac{1}{|x|^{4}}\ast u^{2}\bigg)u +\beta \bigg(\frac{1}{|x|^{4}}\ast v^{2}\bigg)u, &amp; x \in \Omega,\\[10pt] \displaystyle -\Delta v+\nu_{2}v=\mu_{2}\bigg(\frac{1}{|x|^{4}}\ast v^{2}\bigg)v +\beta\bigg (\frac{1}{|x|^{4}}\ast u^{2}\bigg)v, &amp; x \in \Omega,\\[10pt] u,v \geq 0 \quad\text{in }\Omega, \qquad u=v=0 \quad \text{on } \partial\Omega. \end{cases} \end{equation*} Here Ω⊂RN\Omega\subset\mathbb{R}^{N} is a smooth bounded domain, -\lambda_{1}(\Omega)< \nu_{1},\nu_{2}< 0, \lambda_{1}(\Omega) is the first eigenvalue of (−Δ,H01(Ω)) (-\Delta, H_{0}^{1}(\Omega)), \mu_{1},\mu_{2}> 0 and β≠0\beta\neq 0 is a coupling constant. We show that the critical nonlocal elliptic system has a positive least energy solution under appropriate conditions on parameters via variational methods. For the case in which ν1=ν2\nu_{1}=\nu_{2}, we obtain the classification of the positive least energy solutions. Moreover, the asymptotic behaviors of the positive least energy solutions as β→0\beta\rightarrow 0 are studied

    Analysis of the jet pipe electro-hydraulic servo valve with finite element methods

    No full text
    The dynamic characteristics analysis about the jet pipe electro-hydraulic servo valve based on experience and mathematical derivation was difficult and not so precise. So we have analysed the armature feedback components, torque motor and jet pipe receiver in electrohydraulic servo valve by sophisticated finite element analysis tools respectively and have got physical meaning data on these parts. Then the data were fitted by Matlab and the mathematical relationships among them were calculated. We have done the dynamic multi-physical fields’ Simulink co-simulation using above mathematical relationship, and have got the input-output relationship of the overall valve, the frequency response and step response. This work can show the actual working condition accurately. At the same time, we have considered the materials and the impact of the critical design dimensions in the finite element analysis process. It provides some new ideas to the overall design of jet pipe electro-hydraulic servo valve

    Analysis of the jet pipe electro-hydraulic servo valve with finite element methods

    No full text
    The dynamic characteristics analysis about the jet pipe electro-hydraulic servo valve based on experience and mathematical derivation was difficult and not so precise. So we have analysed the armature feedback components, torque motor and jet pipe receiver in electrohydraulic servo valve by sophisticated finite element analysis tools respectively and have got physical meaning data on these parts. Then the data were fitted by Matlab and the mathematical relationships among them were calculated. We have done the dynamic multi-physical fields’ Simulink co-simulation using above mathematical relationship, and have got the input-output relationship of the overall valve, the frequency response and step response. This work can show the actual working condition accurately. At the same time, we have considered the materials and the impact of the critical design dimensions in the finite element analysis process. It provides some new ideas to the overall design of jet pipe electro-hydraulic servo valve

    Impaired influenza A virus replication by the host restriction factor SAMHD1 which inhibited by PA-mediated dephosphorylation of the host transcription factor IRF3

    No full text
    Abstract Background Influenza A virus (IAV) can cause severe and life-threatening illness in humans and animals. Therefore, it is important to search for host antiviral proteins and elucidate their antiviral mechanisms for the development of potential treatments. As a part of human innate immunity, host restriction factors can inhibit the replication of viruses, among which SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) can restrict the replication of viruses, such as HIV and enterovirus EV71. Viruses also developed countermeasures in the arms race with their hosts. There are few reports about whether SAMHD1 has a restriction effect on IAV. Methods To investigate the impact of IAV infection on SAMHD1 expression in A549 cells, we infected A549 cells with a varying multiplicity of infection (MOI) of IAV and collected cell samples at different time points for WB and RT-qPCR analysis to detect viral protein and SAMHD1 levels. The virus replication level in the cell culture supernatant was determined using TCID50 assay. Luciferase assay was used to reveal that H5N1 virus polymerase acidic protein (PA) affected the activity of the SAMHD1 promoter. To assess the antiviral capacity of SAMHD1, we generated a knockdown and overexpressed cell line for detecting H5N1 replication. Results In this study, we observed that SAMHD1 can restrict the intracellular replication of H5N1 and that the H5N1 viral protein PA can downregulate the expression of SAMHD1 by affecting SAMHD1 transcriptional promoter activity. We also found that SAMHD1's ability to restrict H5N1 is related to phosphorylation at 592-tyrosine. Conclusions In conclusion, we found that SAMHD1 may affect the replication of IAVs as a host restriction factor and be countered by PA. Furthermore, SAMHD1 may be a potential target for developing antiviral drugs

    Solution-Processed Hybrid Europium (II) Iodide Scintillator for Sensitive X-Ray Detection

    No full text
    Lead halide perovskite nanocrystals have recently demonstrated great potential as x-ray scintillators, yet they still suffer toxicity issues, inferior light yield (LY) caused by severe self-absorption. Nontoxic bivalent europium ions (Eu2+) with intrinsically efficient and self-absorption-free d–f transition are a prospective replacement for the toxic Pb2+. Here, we demonstrated solution-processed organic–inorganic hybrid halide BA10EuI12 (BA denotes C4H9NH4+) single crystals for the first time. BA10EuI12 was crystallized in a monoclinic space group of P21/c, with photoactive sites of [EuI6]4− octahedra isolated by BA+ cations, which exhibited high photoluminescence quantum yield of 72.5% and large Stokes shift of 97 nm. These properties enable an appreciable LY value of 79.6% of LYSO (equivalent to ~27,000 photons per MeV) for BA10EuI12. Moreover, BA10EuI12 shows a short excited-state lifetime (151 ns) due to the parity-allowed d–f transition, which boosts the potential of BA10EuI12 for use in real-time dynamic imaging and computer tomography applications. In addition, BA10EuI12 demonstrates a decent linear scintillation response ranging from 9.21 μGyair s−1 to 145 μGyair s−1 and a detection limit as low as 5.83 nGyair s−1. The x-ray imaging measurement was performed using BA10EuI12 polystyrene (PS) composite film as a scintillation screen, which exhibited clear images of objects under x-ray irradiation. The spatial resolution was determined to be 8.95 lp mm−1 at modulation transfer function = 0.2 for BA10EuI12/PS composite scintillation screen. We anticipate that this work will stimulate the exploration of d–f transition lanthanide metal halides for sensitive x-ray scintillators
    corecore