470 research outputs found

    Expert consensus on resection of chest wall tumors and chest wall reconstruction

    Full text link
    Chest wall tumors are a relatively uncommon disease in clinical practice. Most of the published studies about chest wall tumors are usually single-center retrospective studies, involving few patients. Therefore, evidences regarding clinical conclusions about chest wall tumors are lacking, and some controversial issues have still to be agreed upon. In January 2019, 73 experts in thoracic surgery, plastic surgery, science, and engineering jointly released the Chinese Expert Consensus on Chest Wall Tumor Resection and Chest Wall Reconstruction (2018 edition). After that, numerous experts put forward new perspectives on some academic issues in this version of the consensus, pointing out the necessity to further discuss the points of contention. Thus, we conducted a survey through the administration of a questionnaire among 85 experts in the world. Consensus has been reached on some major points as follows. (I) Wide excision should be performed for desmoid tumor (DT) of chest wall. After excluding the distant metastasis by multi-disciplinary team, solitary sternal plasmacytoma can be treated with extensive resection and adjuvant radiotherapy. (II) Wide excision with above 2 cm margin distance should be attempted to obtain R0 resection margin for chest wall tumor unless the tumor involves vital organs or structures, including the great vessels, heart, trachea, joints, and spine. (III) For patients with chest wall tumors undergoing unplanned excision (UE) for the first time, it is necessary to carry out wide excision as soon as possible within 1-3 months following the previous surgery. (IV) Current Tumor Node Metastasis staging criteria (American Joint Committee on Cancer) of bone tumor and soft tissue sarcoma are not suitable for chest wall sarcomas. (V) It is necessary to use rigid implants for chest wall reconstruction once the maximum diameter of the chest wall defect exceeds 5 cm in adults and adolescents. (VI) For non-small cell lung cancer (NSCLC) invading the chest wall, wide excision with neoadjuvant and/or adjuvant therapy are recommended for patients with stage T3−4_{3-4}N0−1_{0-1}M0_{0}. As clear guidelines are lacking, these consensus statements on controversial issues on chest wall tumors and resection could possibly serve as further guidance in clinical practice during the upcoming years

    A Constrained Maximum Likelihood Approach to Developing Well-Calibrated Models for Predicting Binary Outcomes.

    Get PDF
    The added value of candidate predictors for risk modeling is routinely evaluated by comparing the performance of models with or without including candidate predictors. Such comparison is most meaningful when the estimated risk by the two models are both unbiased in the target population. Very often data for candidate predictors are sourced from nonrepresentative convenience samples. Updating the base model using the study data without acknowledging the discrepancy between the underlying distribution of the study data and that in the target population can lead to biased risk estimates and therefore an unfair evaluation of candidate predictors. To address this issue assuming access to a well-calibrated base model, we propose a semiparametric method for model fitting that enforces good calibration. The central idea is to calibrate the fitted model against the base model by enforcing suitable constraints in maximizing the likelihood function. This approach enables unbiased assessment of model improvement offered by candidate predictors without requiring a representative sample from the target population, thus overcoming a significant practical challenge. We study theoretical properties for model parameter estimates, and demonstrate improvement in model calibration via extensive simulation studies. Finally, we apply the proposed method to data extracted from Penn Medicine Biobank to inform the added value of breast density for breast cancer risk assessment in the Caucasian woman population

    Regulation of RhoA/ROCK1 signaling pathway by miR 26b in sepsis induced acute lung injury

    Get PDF
    Purpose: To investigate the role of miR-26b in the regulation of RhoA/ ROCK1 signaling pathway in acute lung injury (ALI) caused by sepsis. Methods: Thirty male rats were randomized into sham group (SG), cecal ligation and puncture (CLP) group (CG) and miR-26b mimic group (MG). Hematoxylin and eosin (H & E) staining assay was performed to determine the pathological characteristics of rat lung tissues in each group, while enzyme-linked immunosorbent assay (ELISA) was conducted to determine TNF-α and IL-1β levels. The miR-26b expression was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR), while RhoA and Rock1 protein levels were assessed using western blotting. Results: The CG had significant lung injury in comparison with the SG. There were significant elevation in TNF-α and IL-1β levels (p < 0.05). RhoA and ROCK1 levels in lung tissue were noticeably elevated in CG (p < 0.05). After treatment, lung injury in MG was reduced in contrast to CG. The MG showed statistically significant decrease (p < 0.05) in the levels of TNF-α and IL-1β, while the lung tissue mRNA expression and the RhoA and ROCK1 expression levels were significantly reduced in MG (p < 0.05). Conclusion: The MiR-26b mimics plays an important role in the treatment of ALI induced by sepsis in rats by regulating RhoA/ROCK1 signaling pathway. Thus, the findings of this study provide a theoretical basis for clinical studies on the use of miR-26b in the therapy of sepsis

    A Nested Semiparametric Method for Case-control study with missingness

    Get PDF
    We propose a nested semiparametric model to analyze a case-control study where genuine case status is missing for some individuals. The concept of a noncase is introduced to allow for the imputation of the missing genuine cases. The odds ratio parameter of the genuine cases compared to controls is of interest. The imputation procedure predicts the probability of being a genuine case compared to a noncase semiparametrically in a dimension reduction fashion. This procedure is flexible, and vastly generalizes the existing methods. We establish the root-n asymptotic normality of the odds ratio parameter estimator. Our method yields stable odds ratio parameter estimation owing to the application of an efficient semiparametric sufficient dimension reduction estimator. We conduct finite sample numerical simulations to illustrate the performance of our approach, and apply it to a dilated cardiomyopathy study

    Ionic liquid-assisted synthesis of Yb3+-Tm3+ codoped Y7O6F9 petal shaped microcrystals with enhanced upconversion emission

    Get PDF
    Petal-like Yb3+-Tm3+ codoped Y7O6F9 microparticles were achieved via ionic liquid-assisted (IL) hydrothermal process. The emission efficiency of Y7O6F9:Yb3+/Tm3+ powders is much stronger than that of Y2O3:Yb3+/Tm3+ sample. Under excitation at 980 nm with an unfocused laser beam under weak pump density of ∼0.1 W/cm2 (pump power 10 mW), the UC emission of the sample can been seen clearly. Four emission bands at 477, 540, 647 and 692 nm are observed and correspond to the 1G4 state to 3H6 state, 1D2 state to 3H5 state, 1G4 sate to 3F4 state, and 3F3 state to 3H6 state transition of Tm3+ ions. The enhanced UC emission is related to high crystallinity and lower effective phonon energy of oxyfluorides. The ionic liquid (IL) of [BMIM][BF4] is used both as the reaction medium and the source of F−

    Iohexol Degradation by Biogenic Palladium Nanoparticles Hosted in Anaerobic Granular Sludge

    Get PDF
    To improve the degradation ability of anaerobic granular sludge (AGS) toward the iodinated contrast media (ICM) iohexol, biogenic nanoscale palladium (Pd) was formed in AGS via microbial reduction. The Pd hosted in AGS (Pd-AGS) was used for iohexol degradation. The effects of the electron donor, reaction medium, iodide ion fouling, and polymer embedding of the Pd-AGS on the reactivity were investigated. Our results showed the Pd-AGS increased the degradation rate of iohexol, with a conversion rate constant increased by 86.3-fold compared to the AGS control. Various organic compounds were investigated as electron donors to initiate the catalytic activity of Pd-AGS and the promotion achieved with the tested electron donors was in the following order: formate > lactate > ethanol > glucose > acetate. The Pd-AGS had high reactivity in deionized water at mild pH, and almost no reactivity under acidic (pH = 1.2) and alkaline (pH > 11) conditions. The presence of iodide ions in the medium inhibited the catalytic activity of Pd-AGS toward iohexol because of catalyst fouling. Embedding the Pd-AGS in alginate, chitosan, or polyvinyl alcohol (PVA) could prevent Pd loss but it also retarded the iohexol degradation rate. The Pd-AGS, as a combination of Pd catalyst and AGS, provides a novel strategy for iohexol degradation in polluted water and wastewater

    Design, Synthesis and Biological Evaluation of Biphenylamide Derivatives as Hsp90 C-terminal Inhibitors

    Get PDF
    Modulation of Hsp90 C-terminal function represents a promising therapeutic approach for the treatment of cancer and neurodegenerative diseases. Current drug discovery efforts toward Hsp90 C-terminal inhibition focus on novobiocin, an antibiotic that was transformed into an Hsp90 inhibitor. Based on structural information obtained during the development of novobiocin derivatives and molecular docking studies, scaffolds containing a biphenyl moiety in lieu of the coumarin ring present in novobiocin were identified as new Hsp90 C-terminal inhibitors. Structure-activity relationship studies produced new derivatives that inhibit the proliferation of breast cancer cell lines at nanomolar concentrations, which corresponded directly with Hsp90 inhibition

    Integrated transcriptomic and metabolomic analysis reveals the metabolic programming of GM-CSF- and M-CSF- differentiated mouse macrophages

    Get PDF
    Macrophages play a critical role in the inflammatory response and tumor development. Macrophages are primarily divided into pro-inflammatory M1-like and anti-inflammatory M2-like macrophages based on their activation status and functions. In vitro macrophage models could be derived from mouse bone marrow cells stimulated with two types of differentiation factors: GM-CSF (GM-BMDMs) and M-CSF (M-BMDMs), to represent M1- and M2-like macrophages, respectively. Since macrophage differentiation requires coordinated metabolic reprogramming and transcriptional rewiring in order to fulfill their distinct roles, we combined both transcriptome and metabolome analysis, coupled with experimental validation, to gain insight into the metabolic status of GM- and M-BMDMs. The data revealed higher levels of the tricarboxylic acid cycle (TCA cycle), oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and urea and ornithine production from arginine in GM-BMDMs, and a preference for glycolysis, fatty acid storage, bile acid metabolism, and citrulline and nitric oxide (NO) production from arginine in M-BMDMs. Correlation analysis with the proteomic data showed high consistency in the mRNA and protein levels of metabolic genes. Similar results were also obtained when compared to RNA-seq data of human monocyte derived macrophages from the GEO database. Furthermore, canonical macrophage functions such as inflammatory response and phagocytosis were tightly associated with the representative metabolic pathways. In the current study, we identified the core metabolites, metabolic genes, and functional terms of the two distinct mouse macrophage populations. We also distinguished the metabolic influences of the differentiation factors GM-CSF and M-CSF, and wish to provide valuable information for in vitro macrophage studies

    Research progress in pathophysiological and molecular mechanism changes during decompensated phase of portal hypertension in liver cirrhosis

    Get PDF
    Cirrhosis caused by multiple etiologies can lead to portal hypertension. The prognosis of patients with portal hypertension in decompensated cirrhosis is significantly poor. Disorders in the patient′s internal environment caused by various complications often evolve into organ failure both inside and outside the liver. For cirrhosis caused by different etiologies, there are still some relief drugs used in the early stages, but the mechanism of disease progression in patients with decompensated cirrhosis and portal hypertension is currently unclear, and there is a lack of effective treatment plans for disease progression. Therefore, revealing the pathophysiological mechanisms of decompensated cirrhosis with portal hypertension and seeking effective drug targets for treating this disease have become the focus of current research. This article summarizes the pathological and physiological changes of intrahepatic and extrahepatic organ failure during the decompensated phase of liver cirrhosis, and briefly describes the cellular and molecular regulatory mechanisms related to intrahepatic vascular resistance, portal system, cardiovascular system, and inflammatory mediators. By comprehensively analyzing the pathological and physiological development process of decompensated cirrhosis with portal hypertension, the potential cellular and molecular mechanisms that cause disease deterioration or remission can be better understood, which can help improve the accuracy of disease diagnosis and the correct grasp of disease staging. In addition, identifying drug treatment targets to block the progression of the disease will guide clinical staff to better cope with refractory portal hypertension, and even improve the prognosis of patients
    • …
    corecore