
Portland State University Portland State University 

PDXScholar PDXScholar 

Mathematics and Statistics Faculty 
Publications and Presentations 

Fariborz Maseeh Department of Mathematics 
and Statistics 

8-2023 

A Nested Semiparametric Method for Case-control A Nested Semiparametric Method for Case-control 

study with missingness study with missingness 

Ge Zhao 
Portland State University, gzhao@pdx.edu 

Yanyuan Ma 
Penn State University 

Jill Schnall Hasler 
University of Pennsylvania Perelman School of Medicine, Philadelphia 

Scott Damrauer 
University of Pennsylvania Perelman School of Medicine, Philadelphia 

Michael Levin 
University of Pennsylvania Perelman School of Medicine, Philadelphia 

See next page for additional authors 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/mth_fac 

 Part of the Physical Sciences and Mathematics Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Zhao, G., Ma, Y., Hasler, J. S., Damrauer, S., Levin, M., & Chen, J. A Nested Semiparametric Method for 
Case‐Control Study with Missingness. Scandinavian Journal of Statistics. 

This Article is brought to you for free and open access. It has been accepted for inclusion in Mathematics and 
Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us 
if we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/mth_fac
https://pdxscholar.library.pdx.edu/mth_fac
https://pdxscholar.library.pdx.edu/mth
https://pdxscholar.library.pdx.edu/mth
https://pdxscholar.library.pdx.edu/mth_fac?utm_source=pdxscholar.library.pdx.edu%2Fmth_fac%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/114?utm_source=pdxscholar.library.pdx.edu%2Fmth_fac%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/mth_fac/377
mailto:pdxscholar@pdx.edu


Authors Authors 
Ge Zhao, Yanyuan Ma, Jill Schnall Hasler, Scott Damrauer, Michael Levin, and Jinbo Chen 

This article is available at PDXScholar: https://pdxscholar.library.pdx.edu/mth_fac/377 

https://pdxscholar.library.pdx.edu/mth_fac/377


Received: 15 September 2021 Revised: 30 January 2023 Accepted: 19 June 2023

DOI: 10.1111/sjos.12673

O R I G I N A L A R T I C L E

A nested semiparametric method for
case-control study with missingness

Ge Zhao1 Yanyuan Ma2 Jill Schnall Hasler3

Scott Damrauer3 Michael Levin3 Jinbo Chen3

1Department of Mathematics and
Statistics, Portland State University,
Portland, Oregon, USA
2Department of Statistics, Penn State
University, University Park,
Pennsylvania, USA
3Epidemiology and Informatics,
University of Pennsylvania Perelman
School of Medicine, Philadelphia,
Pennsylvania, USA

Correspondence
Ge Zhao, Department of Mathematics
and Statistics, Portland State University,
Portland, OR 97201, USA.
Email: gzhao@pdx.edu

Abstract
We propose a nested semiparametric model to analyze a
case-control study where genuine case status is missing
for some individuals. The concept of a noncase is intro-
duced to allow for the imputation of the missing genuine
cases. The odds ratio parameter of the genuine cases
compared to controls is of interest. The imputation pro-
cedure predicts the probability of being a genuine case
compared to a noncase semiparametrically in a dimen-
sion reduction fashion. This procedure is flexible, and
vastly generalizes the existing methods. We establish the
root-n asymptotic normality of the odds ratio parameter
estimator. Our method yields stable odds ratio param-
eter estimation owing to the application of an efficient
semiparametric sufficient dimension reduction estima-
tor. We conduct finite sample numerical simulations to
illustrate the performance of our approach, and apply it
to a dilated cardiomyopathy study.
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2 ZHAO et al.

1 INTRODUCTION

Our work is motivated by a case-control study of dilated cardiomyopathy conducted using the
University of Pennsylvania hospital electronic health record (EHR). Cases and controls were iden-
tified from Penn EHRs using separate rules that were created based on EHR data elements. The
rule for identifying controls was rigorous so that controls were identified accurately as in typical
EHR-based case-control studies. A more relaxed rule was used for identifying candidate cases.
A larger number of genuine cases could be included in the study using this more relaxed rule,
which is essential for ensuring study power and generalizability of study results. However, such
a relaxed rule led to the inclusion of patients who are not genuine cases and also do not satisfy
the control definition. These patients are referred to as “non-cases” (Wang et al., 2020). Noncases
differ from genuine cases, and they differ from controls as well, making them ineligible for the
study. When estimating odds ratio association parameters, naively treating noncases as genuine
cases will lead to biased results (Little & Rubin, 2019). Stemming from the fact that it is often
very difficult to create a binary decision rule for discerning patients with or without a condition
among the candidate cases, this challenge is common when conducting EHR-based case-control
studies. In this work, we propose an innovative method to effectively account for inaccurate case
selection.

Our problem can be viewed as belonging to the missing data framework, where the true
status of being a noncase or genuine case is unknown for the identified candidate cases. More
specifically, the probability model for predicting genuine cases in the combined population of
genuine cases and noncases automatically serves as a model for the missingness and naturally
brings us to the missing at random (MAR) framework. Our method imputes the true status by
modeling the relationship between the genuine case and noncase from a validated subset. This
setup represents one key feature of our method. We form a two-layer nested case-control study
by treating the genuine cases and noncases as a new case-control data structure along with the
primary case-control data. Another key feature of our method is that we impute the missing
case status through a semiparametric model which is sufficiently flexible and allows for many
covariates.

The imputation step in our approach is nonstandard and plays a different role from what is
typically done in the classical imputation literature. Imputation is a widely applied approach for
accommodating missing data (Aerts et al., 2002; Little & Rubin, 1987), including missing binary
outcomes (Mukaka et al., 2016). But few works focus on case-control studies with missing gen-
uine case status when there is a third group of individuals who are ineligible for the study. Wang
et al. (2020) proposed a parametric imputation method for case-control studies in this framework.
This method introduces imputation to the estimating equation which corrects the bias caused by
the missing genuine case status. To retain the flexibility while bypassing the curse of dimension-
ality (Wang et al., 2004), we propose a semiparametric sufficient dimension reduction model, and
apply an efficient procedure (Ma & Zhu, 2012) to obtain the efficient probability prediction in
our imputation procedure. This leads to a stabilized odds ratio parameter estimation in the main
model. This modeling and estimation approach allows us to impose minimal assumptions on the
missingness scheme while limiting its influence on our odds ratio parameter estimation. In addi-
tion, we perform imputation with a probability instead of a randomly generated outcome in an
intermediate step of our method. This practice minimizes the potential bias, especially when the
prediction probability is extreme (Bernaards et al., 2007), and stabilizes the computation of the
overall method.
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ZHAO et al. 3

2 MODELING THE CASE- CONTROL DATA WITH
MISSINGNESS

Let D denote the outcome, with D = 0 indicating the controls, D = 1 indicating the genuine cases,
and D = 2 indicating the noncases. The definition of noncases here is simply anyone who is nei-
ther a genuine case nor a control. Let N1 be the sample size of candidate cases (i = 1,…,N1), which
includes both genuine cases (D = 1) and noncases (D = 2). There are also N0 controls (Di = 0, i =
N1 + 1,…,N ≡ N1 + N0). Further, n1 observations (i = 1,…,n1) from the N1 candidate-cases are
fully observed, and we use the indicator S to denote the validated outcome status. Specifically,
S = 1 indicates a genuine case and S = 0 denotes a noncase. Let X be a p dimensional covari-
ate vector and Z be a q-dimensional covariate vector. X and Z are allowed to share common
components or can even be identical.

Our goal is to fit a logistic regression model using the the genuine cases and controls. When
all patients in the model are either genuine cases or controls, the probability that the patient is a
genuine case is

pr(D = 1 |X,Z,D ≠ 2) = pr(D = 1 |X,D ≠ 2) =
exp(𝛽c + 𝜷T

1 X)
1 + exp(𝛽c + 𝜷T

1 X)
. (1)

Note that there is no Z in model (1). In other words, we use X to represent all the covariates that
are responsible for separating genuine cases from controls in the combined population of genuine
cases and controls. Hence, the probability that the patient is a control is

pr(D = 0 |X,Z,D ≠ 2) = pr(D = 0 |X,D ≠ 2) = 1
1 + exp(𝛽c + 𝜷T

1 X)
,

where 𝛽c ∈ R, 𝜷1 ∈ Rp. We note that the indicators D indexed from i = n1 + 1, ...,N1 in the sample
are not observed. We therefore propose to recover the missingness in D by utilizing the under-
lying structure among the candidate cases. To do this, we assume that given an observation is a
candidate case (i.e., is not a control), the probability of being a genuine case is

pr(S = 1 |X,Z,D ≠ 0) = pr(D = 1 |X,Z,D ≠ 0)
= pr(S = 1 |Z,D ≠ 0)
= pr(D = 1 |Z,D ≠ 0)

=
exp{𝜂(𝜸TZ)}

1 + exp{𝜂(𝜸TZ)}
. (2)

Note that there is no X in (2). The covariates that are responsible for predicting genuine cases from
noncases in the combined population of genuine cases and noncases are collected as Z. Hence,
the probability of being a noncase is

pr(S = 0 |X,Z,D ≠ 0) = pr(D = 2 |X,Z,D ≠ 0)
= pr(S = 0 |Z,D ≠ 0)
= pr(D = 2 |Z,D ≠ 0)

= 1
1 + exp{𝜂(𝜸TZ)}

,
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4 ZHAO et al.

where 𝜸 ∈ Rq×d and 𝜂(⋅) ∶ Rd → R is an arbitrary function. Note that we have used X to repre-
sent all the predictive covariates for (1), and have used Z to represent all the predictive covariates
for (2). Because X and Z are allowed to overlap or even be identical, we are not imposing any
additional independence assumptions. The function 𝜂 is unspecified in (2), and the dimension
d will be selected via the data-driven method Validated Information Criterion (VIC) (Ma &
Zhang, 2015) in practice. When d is selected to be q, the parameter 𝜸 becomes the identity matrix,
and (2) becomes a purely nonparametric model. In this sense, (2) can be viewed as a maxi-
mally flexible model and enjoys the same robustness as any nonparametric model against model
misspecification.

In this study, we have assumed (2) is correct. Because (2) serves as a missingness mechanism
model in our problem formulation, this directly brings us to the MAR framework. In the spe-
cial case when Z contains only 1, corresponding to the intercept term, the problem degenerates
to missing completely at random (MCAR), and our method will still apply. On the other hand,
if some important covariates that are related to D are not included in Z, then (2) will be a mis-
specified model. In this case, the estimation procedure will break down. Indeed, in this case, the
missingness of S will be dependent on that unobserved covariates, which may be further related
to whether or not D = 0 or D = 1 in the population of controls and genuine cases combined.
Hence, we are actually in the missing not at random (MNAR) framework. It is well known that
any method developed by assuming MAR while the true data structure is MNAR will produce
biased results.

3 NESTED SEMIPARAMETRIC METHODOLOGY

3.1 Estimating equation

According to our proposed model, the estimating equation for the case-control odds ratio param-
eter 𝜷c and 𝜷1 in (1) is equivalent to

n1∑

i=1
(1,XT

i )
TSi

{

1 −
exp(𝛽∗c + 𝜷T

1 Xi)
1 + exp(𝛽∗c + 𝜷T

1 Xi)

}

+
N1∑

i=n1+1
(1,XT

i )
T
̃Si

{

1 −
exp(𝛽∗c + 𝜷T

1 Xi)
1 + exp(𝛽∗c + 𝜷T

1 Xi)

}

+
N∑

i=N1+1
(1,XT

i )
T

{

0 −
exp(𝛽∗c + 𝜷T

1 Xi)
1 + exp(𝛽∗c + 𝜷T

1 Xi)

}

= 0,

where ̃Si, i = n1 + 1,…,N1, denotes the hypothetical case indicator within the unobserved n2 ≡

N1 − n1 samples whose status D can be either a genuine case or noncase. In other words, ̃Si = 1 if
the ith candidate case is a genuine case and ̃Si = 0 if it is a noncase. Because ̃Si’s are not available,
our intention is to first impute ̃Si’s using (2).

3.2 Semiparametric imputation model

Following the multiple imputation idea, imputing ̃Si is equivalent to replacing ̃Si’s with the prob-
abilities predicted by (2). We first need to estimate the parameters in (2). To this end, we take
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ZHAO et al. 5

advantage of an efficient semiparametric method (Ma & Zhu, 2012) to estimate the unknown
component 𝜂(⋅) and the high-dimensional parameter 𝜸 simultaneously. In order to avoid the iden-
tifiability issue, we assume the upper d × d block of 𝜸 is the identity and only the lower (p − d) × d
block of 𝜸 needs to be estimated. In the semiparametric model (2), the nuisance parameters are 𝜂(⋅)
and fZ(z), the density of covariate Z. The corresponding nuisance tangent space is Λ = Λ1 ⊕ Λ2,
where

Λ1 =
[
a(Z) ∶ E{a(Z)} = 0, for all a(Z) ∈ R(q−d)d]

,

Λ2 =
[{

S − e𝜂(𝜸TZ)

1 + e𝜂(𝜸TZ)

}

h(𝜸TZ) ∶ for all h(𝜸TZ) ∈ R(q−d)d
]

.

The efficient score is

vecl
[
{

Z − E(Z | 𝜸TZ)
}
𝜼′(𝜸TZ)T

{

S − e𝜂(𝜸TZ)

1 + e𝜂(𝜸TZ)

}]

, (3)

where “vecl” is vectorizing the lower (p − d) × d block of a matrix. Hence we can solve the
estimating equation

n1∑

i=1
vecl

[
{

Zi − E(Zi | 𝜸
TZi)

}
𝜼′(𝜸TZi)T

{

Si −
e𝜂(𝜸TZi)

1 + e𝜂(𝜸TZi)

}]

= 0, (4)

to obtain an efficient estimator for 𝜸.
We need to point out that when efficiency of the estimation of 𝜸 is not sought after, (4) can be

generalized to the following form

n1∑

i=1
vecl

(

{Zi − ̂E(Zi | 𝜸
TZi)}

[

g(Si, 𝜸
TZi) − ̂E{g(Si, 𝜸

TZi) | 𝜸TZi}
])

= 0,

where g(⋅, ⋅) is an arbitrary nontrivial function on Rd. This estimator retains the consistency of
the 𝜸 estimation as well (Ma & Zhu, 2012).

Since both E(Zi | 𝜸
TZi) and 𝜂(𝜸TZi) are unknown in (4), we use the following approach to esti-

mate these two quantities. First, we posit a working model 𝜂∗, and its corresponding derivative is
𝜼∗′. Let ̂E(Zi | 𝜸

TZi) be a nonparametric estimator of E(Zi | 𝜸
TZi), for example, a kernel estimation.

This yields the estimating equation

n1∑

i=1
vecl

[{

Zi − ̂E(Zi | 𝜸
TZi)

}

𝜼∗′(𝜸TZi)T
{

Si −
e𝜂∗(𝜸TZi)

1 + e𝜂∗(𝜸TZi)

}]

= 0. (5)

Write the estimator as �̂�1 which is a consistent estimator of 𝜸. Second, we estimate 𝜂 and 𝜼′ by
solving the equations of b0 and b1 from

n1∑

i=1

[

Si −
exp{b0 + bT

1 (�̂�
T
1 Zi − t)}

1 + exp{b0 + bT
1 (�̂�

T
1 Zi − t)}

](
1

�̂�
T
1 Zi − t

)

Kh(�̂�T
1 Zi − t) = 0, (6)

to obtain the estimation of 𝜂(t) and �̂�′(t) at any t ∈ Rd. Here, K(⋅) is a kernel function and Kh(⋅) =
K(⋅∕h)∕h. Finally, we plug 𝜂(𝜸TZ), �̂�′(𝜸TZ) and ̂E(Zi | 𝜸

TZi) into (4) and solve for the efficient
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6 ZHAO et al.

estimator �̂� from the estimating equation

n1∑

i=1
vecl

[{

Zi − ̂E(Zi | 𝜸
TZi)

}

�̂�
′(𝜸TZi)T

{

Si −
e𝜂(𝜸TZi)

1 + e𝜂(𝜸TZi)

}]

= 0. (7)

3.3 Nested estimating equation for odds ratio parameters

By incorporating the estimation 𝜂(⋅) and �̂� from (6) and (7), we will be able to impute the status
of the n2 candidate cases using the generated model

(̃Si |Di ≠ 0) ∼ Bernoulli

[
exp{𝜂(�̂�TZi)}

1 + exp{𝜂(�̂�TZi)}

]

, i = n1 + 1,…,N1. (8)

Using multiple imputation, say B imputations and taking the average, then when B → ∞,
we obtain

B−1
B∑

b=1

̃Sib →
exp{𝜂(�̂�TZi)}

1 + exp{𝜂(�̂�TZi)}
,

in probability, and hence, we get the estimating equation

0 =
n1∑

i=1
(1,XT

i )
TSi

{

1 −
exp(𝛽c + 𝜷T

1 Xi)
1 + exp(𝛽c + 𝜷T

1 Xi)

}

+
N1∑

i=n1+1
(1,XT

i )
T exp{𝜂(�̂�TZi)}

1 + exp{𝜂(�̂�TZi)}

{

1 −
exp(𝛽c + 𝜷T

1 Xi)
1 + exp(𝛽c + 𝜷T

1 Xi)

}

+
N∑

i=N1+1
(1,XT

i )
T

{

0 −
exp(𝛽c + 𝜷T

1 Xi)
1 + exp(𝛽c + 𝜷T

1 Xi)

}

. (9)

We solve this equation to obtain ̂
𝛽c and ̂𝜷1. Following Chen and Ibrahim (2014), considering infi-

nite B will eliminate the additional between-imputation variation. Note that the estimation of 𝛽c
and 𝜷1 is completely separated from the estimation of 𝜂 and 𝜸. Both estimation procedures are
standard, hence the computation is not challenging. Below, we provide the detailed algorithm.

Step 1 Obtain an initial estimation �̂�1:
Obtain an initial estimator �̂�1 from solving (5) based on data {Si,Zi}

n1
i=1. In (5), 𝜂∗ and 𝜼∗′

are from a working model and

̂E(Zi | 𝜸
T
1 Zi) =

∑N1
k=n1+1ZkKh(𝜸T

1 Zk − 𝜸T
1 Zi)

∑N1
k=n1+1Kh(𝜸T

1 Zk − 𝜸T
1 Zi)

.

Step 2 Estimate 𝜂(𝜸TZi), 𝜼′(𝜸TZi) and 𝜸:
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ZHAO et al. 7

21 For any 𝜸 and t = 𝜸TZi, i = 1,…,n1, compute 𝜂(𝜸TZi) and �̂�′(𝜸TZi) as the solution of
b0 and b1 to (6), respectively.

22 Insert 𝜂(𝜸TZi) and �̂�′(𝜸TZi) from Step 221 into (7) and solve it to obtain an updated �̂�1
based on the data {Si,Zi}

n1
i=1.

23 Repeat Step 21 and Step 22 until convergence. The resulting �̂�1 is the efficient
estimator of 𝜸. Let �̂� = �̂�1.

Step 3 Apply the imputation model:
Solve for 𝜂(�̂�TZi) and �̂�′(�̂�TZi) from (6) at each t = �̂�TZi, i = n1 + 1,…,N1.

Step 4 Obtain ̂
𝛽c and ̂𝜷1:

Compute ̂𝛽c and ̂𝜷1 by solving (9), based on �̂� from Step 23,
{

𝜂(�̂�TZi), �̂�′(�̂�TZi)
}N1

i=n1+1
from

Step 3, and data {Xi}N
i=1, {Si}

n1
i=1 and {Zi}

N1
i=n1+1.

All the equations in the algorithm are solved by Powell’s algorithm (Powell, 1965). Powell’s
algorithm is designed for solving multivariate nonlinear problems.

4 ASYMPTOTIC PROPERTIES

We intend to derive the asymptotic properties of the estimator from (9) for 𝜷1 by taking into
account the variability of 𝜂(⋅) and �̂�. For simplicity, we denote the expit function H, that is,
H(t) = exp(t)∕{1 + exp(t)} for any t. Let 𝜷 = (𝜷c, 𝜷

T
1 )T and Wi = (1,XT

i )
T. We prove the results for

the case where 𝜸 is a vector. The case where 𝜸 is a matrix, the results are similar but with more
complex notation in handling matrix operations.

First, we list the regularity conditions for deriving the asymptotic properties.

C1 There exists two constants 0 < c1 < c2 < ∞ so that the sample sizes satisfy c1 < n1∕n2 < c2
and c1 < N1∕N0 < c2.

C2 The univariate kernel function K(⋅) is Lipschitz, symmetric and has compact support. It
satisfies

∫

K(u)du = 1,
∫

uiK(u)du = 0, 1 ≤ i ≤ m − 1, 0 ≠
∫

umK(u)du < ∞,

for an integer m > 2. The d-dimensional kernel function is a product of d univariate kernel
functions, that is, Kh(u) = K(u∕h)∕hd = Πd

j=1Kh(uj) = Πd
j=1K(uj∕h)∕hd for u = (u1,…,ud)T.

Here we use the same K regardless of the dimension of its argument.
C3 The bandwidth h = O(n−𝜅1 ) for 1∕(4m) < 𝜅 < 1∕(2d).
C4 The density functions of Z and 𝜸TZ, denoted, respectively, by fZ(z) and f𝜸TZ(𝜸Tz), are

bounded from below and above. Each entry in the matrices E
(
ZZT | 𝜸Tz

)
is locally

Lipschitz-continuous and bounded from above as a function of 𝜸Tz.
C5 E(Z | 𝜸Tz)f𝜸TZ(𝜸Tz) and g(𝜸Tz) are mth-order differentiable and their mth derivatives, as well

as f𝜸TZ(𝜸Tz) are locally Lipschitz-continuous.
C6 (The boundedness.) The parameter space  is bounded.

These are very mild conditions. Condition C1 requires that the proportion of cases and con-
trols do not degenerate to zero both in the population and in the sample. Conditions C2 and C3 are
common requirements on the kernel function and the bandwidth. Conditions C4 and C5 assume
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8 ZHAO et al.

sufficient smoothness and boundedness of the density of covariates corresponding to the efficient
semiparametric method. In order to ensure a unique solution of the parameter estimation, we
assume the boundedness of parameter space in Condition C6.

Lemma 1. Under Conditions C2–C5, especially n1∕2
1 h4 → 0 and n1h2 →∞, using

results from Ma and Zhu (2012), we obtain that �̂� is a consistent estimator of 𝜸 satisfying

n1∕2
1 (�̂� − 𝜸) = −n−1∕2

1

n1∑

i=1
A−1
𝜸 f(Si,Zi, 𝜸, g) + op(1),

where

f(Si,Zi, 𝜸, g) = vecl
(
{Zi − E(Zi | 𝜸

TZi)}
[
g(Si, 𝜸

TZi) − E{g(Si, 𝜸
TZi) | 𝜸TZi}

])
,

and

A𝜸 = E

{
𝜕vecl

(
{Zi − E(Zi | 𝜸

TZi)}
[
g(Si, 𝜸

TZi) − E{g(Si, 𝜸
TZi) | 𝜸TZi}

])

𝜕vecl(𝜸)T
|Di ≠ 0

}

.

We do not include the details of Lemma 1 since it was carefully proved and discussed in Ma
and Zhu (2013). Following Ma and Zhu (2013), the above expansion still holds if we replace the
pre-decided function g(⋅) with the estimated version of the function g0(⋅), where

g0(Si, 𝜸
TZi) ≡ [Si −H{𝜂(𝜸TZi)}]

𝜕𝜂(𝜸TZi)
𝜕(𝜸TZi)

.

To further estimate 𝜂(⋅) regardless which choice of g(⋅) function is used in obtaining �̂�, we propose
to simply perform a kernel mean regression followed with a logit transformation, that is, at any
u0, we set

𝜂(u0, �̂�) ≡ H−1

{∑n1
i=1SiKh(�̂�TZi − u0)
∑n1

i=1Kh(�̂�TZi − u0)

}

.

Next, we provide the asymptotic properties of ̂𝜷 based on the discussion of �̂� and 𝜂.

Theorem 1. Under Conditions C1–C6, ̂𝜷 is a consistent estimation of 𝜷 and

N1∕2(̂𝜷 − 𝜷)→ N(0,A−1
𝜷

VA−1
𝜷

T),

where V = n1N−1V1 + n2N−1V2 + N1N−1V3,

V1 = E
{(

WiSi{1 −H(𝜷TWi)} +
n2

n1
E
[
Wi{1 −H(𝜷TWi)} | 𝜸TZi

]

×{Si − E(Si | 𝜸
TZi)} −

n2

n1
(B2 + B𝜸)A−1

𝜸 f(Si,Zi, 𝜸, g)
)
⊗2
}

,

V2 = E
[
WiWT

i {1 −H(𝜷TWi)}2{E(Si | 𝜸
TZi)}2]

,

V3 = E{WiWT
i H(𝜷TWi)2},
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ZHAO et al. 9

and

A𝜷 = N1N−1E[WiWT
i H{𝜂(𝜸TZi)}H(𝜷TWi){1 −H(𝜷TWi)} |D ≠ 0]

+ N0N−1E[WiWT
i H(𝜷TWi){1 −H(𝜷TWi)} |Di = 0].

The asymptotic variance in Theorem 1 has the typical sandwich form. The matrix A𝜷 results
from the derivative of (9) with respect to 𝜷. The matrix V contains three components. The
first component V1 captures the variability contributed by the randomness of the fully observed
genuine and noncases. The second component V2 corresponds to the variability due to the ran-
domness of the candidate-cases. The third component V3 corresponds to the variability due to the
randomness of the controls.

Theorem 1 shows that the proposed estimator ̂𝜷 is consistent with a root-n convergence rate.
It also provides an approach to estimate the asymptotic variance of ̂𝜷. The proof of Theorem 1 is
in the Appendix S1.

5 NUMERICAL SIMULATION

5.1 Data generation procedure

The population can be divided into three parts, D = 0, 1, and 2, according to the model. The
ratio between D = 0 and D = 1 is 1 ∶ exp(𝛽c + 𝜷T

1 X) and the ratio between D = 1 and D = 2 is
exp{𝜂(𝜸TZ)} ∶ 1. Thus, the ratio between D = 0 ∶ D = 1 ∶ D = 2 is 1 ∶ exp(𝛽c + 𝜷T

1 X) ∶ exp{𝛽c +
𝜷T

1 X − 𝜂(𝜸TZ)}. Therefore, we use the following data generating process to conduct finite sample
studies.

1. Generate a population following the model

pr(D = 0 |X,Z) = 1
1 + exp(𝛽c + 𝜷T

1 X) + exp{𝛽c + 𝜷T
1 X − 𝜂(𝜸TZ)}

,

pr(D = 1 |X,Z) =
exp(𝛽c + 𝜷T

1 X)
1 + exp(𝛽c + 𝜷T

1 X) + exp{𝛽c + 𝜷T
1 X − 𝜂(𝜸TZ)}

,

pr(D = 2 |X,Z) =
exp{𝛽c + 𝜷T

1 X − 𝜂(𝜸TZ)}
1 + exp(𝛽c + 𝜷T

1 X) + exp{𝛽c + 𝜷T
1 X − 𝜂(𝜸TZ)}

.

2. Sample N0 observations from the D = 0 subpopulation.
3. Sample N1 observations from the D = 1 and D = 2 subpopulations combined.
4. Sample n1 observations from the sub-sample with size N1 above, set S = 1 if D = 1 and S = 0

if D = 2. Mask out the D information on all the N1 observations.

5.2 Finite sample study

We study the finite sample performance of our method through simulation studies. In each of
our studies, we generate 1000 datasets. In the first study, we generate a p = 6 dimensional covari-
ate vector X from the multivariate normal distribution with mean zero and variance-covariance
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10 ZHAO et al.

T A B L E 1 Results of Study 1, based on 1000 simulations with 1000 control-cases and 1000 candidate-cases.

𝜷1 𝜷2 𝜷3 𝜷4 𝜷5 𝜷6

True 1.3 −1.3 1 −2.5 2.5 −0.5

Semi Mean 1.304 −1.321 0.985 −2.525 2.490 −0.487

Bias 0.004 0.021 0.014 0.025 0.009 0.012

SD 0.188 0.190 0.197 0.188 0.209 0.194

̂SD 0.191 0.191 0.190 0.201 0.198 0.188

CI (0.93, 1.68) (−1.70,−0.96) (0.61, 1.36) (−2.92,−2.13) (2.10, 2.87) (−0.86,−0.13)

Coverage 97.3% 95.5% 93.2% 94.3% 93.2% 94.8%

OEE Mean 1.318 −1.317 1.014 −2.539 2.532 −0.510

Bias 0.018 0.017 0.014 0.039 0.032 0.010

SD 0.113 0.119 0.112 0.178 0.168 0.107

̂SD 0.128 0.128 0.119 0.182 0.179 0.110

CI (0.87, 1.74) (−1.75,−0.91) (0.55, 1.42) (−2.95,−2.08) (2.06, 2.97) (−0.94,−0.08)

Coverage 97.4% 96.4% 96.0% 95.6% 97.2% 96.2%

Naive Mean 1.770 −1.620 0.836 −1.288 0.956 0.010

Bias 0.470 0.320 0.163 1.211 1.543 0.510

SD 0.215 0.210 0.203 0.222 0.215 0.195

̂SD 0.203 0.199 0.192 0.207 0.201 0.191

CI (0.94, 1.63) (−1.66,−0.95) (0.63, 1.32) (−3.15,−2.41) (1.76, 2.48) (−0.47, 0.22)

Coverage 32.9% 59.2% 84.5% 0.0% 0.0% 26.7

Abbreviations: Bias, average of absolute bias; CI, average 95% confidence interval; Coverage, 95% coverage of corresponding
estimation; Mean, average of ̂𝜷; SD, sample standard deviation; ̂SD, average of the estimated standard deviations of the
corresponding estimation.

matrix equal to the identity. We set (Z1,Z2,Z3)T = (X1,X2,X3)T, and generate (Z4,Z5,Z6)T from
the multivariate normal distribution with mean zero and variance–covariance matrix identity I3.
Thus, the dimension of Z is q = 6. We set the true parameter values 𝜸 = (1, 1.3,−1.3, 1,−1.5, 1.5)T,
𝜷 = (1.3,−1.3, 1,−2.5, 2.5,−0.5)T and consider the true 𝜂 function to be 𝜂(𝜸TZ) = 𝜸TZ. We exper-
iment with sample size N0 + N1 = 2000. Of the 2000 samples, n1 = 500 are observed candidate
cases whose true status, D is known (D = 1 or D = 2), N0 = 1000 are controls (D = 0), and the
remaining N1 − n1 = 500 are candidate cases whose true status is unobserved (unknown D where
D = 1 or D = 2).

In the second study, we repeat the same analysis as in the first study, except here, the true 𝜂
function is 𝜂(𝜸TZ) = 1 − (𝜸TZ)2. In the first two studies, we set the bandwidth in the nonparamet-
ric estimator to be cSD(𝜸TZ)(N1 − n1)−1∕3 and c is a constant in the range of 0.1 to 10. The results
are insensitive in this range of c.

The performances of ̂𝜷 in the first simulation study are in Table 1 and Figure 1. We can
see clearly that the estimators of 𝜷 have very small biases and SDs. We also report the esti-
mated SD of the main regression parameter estimator ̂𝜷 using the asymptotic results provided in
Section 4. Clearly, the average estimated SD is close to the sample SD and the resulting 95% con-
fidence interval has coverage close to the nominal level. The estimation of 𝜸 is also consistent
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F I G U R E 1 Simulation performance in Study 1. Left panel: boxplot of ̂𝛽. Right panel: performance of 𝜂.
Black solid line is the truth for both panels. Blue solid line: mean of 𝜂, Lower blue dashed line: 0.05 quantile of 𝜂,
Upper blue dashed line: 0.95 quantile of 𝜂.

with very small SEs. The absolute biases of �̂�−1’s are (0.025, 0.004, 0.052, 0.022, 0.001)T and the
corresponding SEs are (0.609, 0.552, 0.649, 0.599, 0.610)T, where subscript −1 indicates the indices
corresponding to all values of �̂� except for the first one. More details of estimating 𝜸 have been
rigorously discussed in Ma and Zhu (2012) and Ma and Zhu (2013). From Figure 1 we can see
that the mean of 𝜂(𝜸Tz) is close to the true function 𝜂(𝜸Tz) overall, with the performance at
the boundary worse than the interior as is typical for all nonparametric estimators. The results
of estimating 𝜷 in the second simulation study are in Table 2 and Figure 2. The estimation
of 𝜸−1 has small absolute biases with value (0.072, 0.051, 0.076, 0.092, 0.086)T and the SEs are
(0.470, 0.511, 0.482, 0.482, 0.518)T. The same conclusion can be drawn as in the first simulation.
For comparison, we also report the results from a naive method and original EE (OEE) method
(Wang et al., 2020). The naive method treats the noncases as genuine cases. The OEE method pro-
poses a weighted estimating equation to overcome the bias from the naive method. The weight
is calculated by estimating the probability of being a genuine case given covariates parametri-
cally. By doing so, its odds ratio parameter estimation is unbiased. OEE performs well in the first
study because the model is correctly specified. On the contrary, OEE performs poorly in the sec-
ond study when the model is misspecified. Without surprise, the naive method performs poorly
in both studies.

We also conduct a third simulation to evaluate the performance of the proposed model in a
high-dimensional covariate case which imitates the dilated cardiomyopathy dataset. In this sce-
nario, we generate X and Z from independent standard uniform distribution with dimension
p = q = 20, d = 2, and they share 10 common covariates. The 𝜂 function is 𝜂(𝜸TZ) = cos{(𝜸T

1 Z)2 +
(𝜸T

2 Z)2}, where 𝜸1 and 𝜸2 stand for the first and second column vectors in 𝜸, respectively. The
sample sizes are N1 = 2000 and N0 = 5000 for cases and controls. Among the candidate cases, we
randomly mask out D for 1000 observations. The bandwidth in the nonparametric estimator is set
to be c{SD(𝜸T

1 Z) + SD(𝜸T
2 Z)}(N1 − n1)−1∕5, and c is a constant in the range of 0.1 to 10. The results

are insensitive in this range of c.
The 𝜷−1 estimation of the third simulation is reported in Table 3 along with the corresponding

SD estimation and 95% coverage probability. We also illustrate the estimated 𝜂(⋅), that is, 𝜂(⋅),
in Figure 3 where the mean and 95% confidence band are reported. We can see the estimation
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12 ZHAO et al.

T A B L E 2 Results of Study 2, based on 1000 simulations with 1000 control-cases and 1000 candidate-cases.

𝜷1 𝜷2 𝜷3 𝜷4 𝜷5 𝜷6

True 1.3 −1.3 1 −2.5 2.5 −0.5

Semi Mean 1.281 −1.283 0.981 -2.427 2.462 −0.469

Bias 0.018 0.017 0.018 0.073 0.037 0.030

SD 0.164 0.165 0.149 0.240 0.221 0.141

̂SD 0.153 0.152 0.142 0.225 0.209 0.138

CI (0.97, 1.49) (−1.50,−0.96) (0.70, 1.20) (−2.73,−1.99) (2.01, 2.75) (−0.74,−0.23)

Coverage 93.3% 91.9% 94.2% 91.3% 92.6% 93.4%

OEE Mean 0.804 −0.804 0.620 −1.400 1.554 −0.262

Bias 0.495 0.495 0.379 1.099 0.945 0.237

SD 0.081 0.081 0.076 0.122 0.117 0.091

̂SD 0.110 0.110 0.107 0.118 0.122 0.102

CI (0.59, 0.99) (−1.00,−0.59) (0.42, 0.81) (−1.44,−1.01) (1.28, 1.73) (−0.49,−0.11)

Coverage 0.1% 0.2% 2.4% 0.0% 0.0% 35.6%

Naive Mean 1.559 −1.683 0.975 −0.885 1.126 −0.251

Bias 0.259 0.383 0.024 1.614 1.373 0.248

SD 0.201 0.207 0.196 0.205 0.224 0.203

̂SD 0.198 0.200 0.192 0.200 0.204 0.192

CI (0.55, 0.80) (−0.81,−0.55) (0.40, 0.64) (−1.50,−1.19) (1.11, 1.40) (−0.33,−0.09)

Coverage 74.1% 49.9% 93.9% 0.0% 0.0% 75.3%

Abbreviations: Bias, average of absolute bias; CI, average 95% confidence interval; Coverage, 95% coverage of corresponding
estimation; Mean, average of ̂𝜷; SD, sample standard deviation; ̂SD, average of the estimated standard deviations of the
corresponding estimation.
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F I G U R E 2 Simulation performance in Study 2. Left panel: boxplot of ̂𝛽. Right panel: performance of 𝜂.
Black solid line is the truth for both panels. Blue solid line: mean of 𝜂, Lower blue dashed line: 0.05 quantile of 𝜂,
Upper blue dashed line: 0.95 quantile of 𝜂.
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ZHAO et al. 13

T A B L E 3 Results of Study 3, based on 1000 simulations with 2000 control-cases and 2000 candidate-cases.

parameter True Bias SD ŜD Coverage CI
𝛽1 −0.562 0.021 0.108 0.109 94.3% (−0.31, 0.19)

𝛽2 −0.025 4.6×10−4 0.103 0.109 97.9% (−0.42, 0.07)

𝛽3 −0.346 3.7×10−3 0.105 0.109 95.2% (−0.31, 0.19)

𝛽4 −0.214 4.3×10−3 0.105 0.109 96.5% (−0.46, 0.03)

𝛽5 0.059 0.021 0.116 0.109 93.5% (−0.35, 0.12)

𝛽6 −0.002 3.5×10−3 0.111 0.109 92.9% (−0.40, 0.11)

𝛽7 −0.343 7.7×10−3 0.103 0.109 96.1% (−0.38, 0.02)

𝛽8 −0.108 4.8×10−3 0.119 0.109 93.0% (−0.40, 0.11)

𝛽9 −0.528 7.4×10−5 0.108 0.110 96.5% (−0.42, 0.01)

𝛽10 0.283 1.5×10−3 0.106 0.109 94.8% (−0.37, 0.11)

𝛽11 −0.589 1.2×10−2 0.123 0.110 90.9% (−0.38, 0.11)

𝛽12 0.025 1.3×10−2 0.112 0.109 97.0% (−0.38, 0.10)

𝛽13 0.057 2.8×10−3 0.105 0.109 95.4% (−0.35, 0.12)

𝛽14 −0.555 4.6×10−3 0.110 0.110 95.6% (−0.40, 0.09)

𝛽15 −0.302 8.9×10−3 0.124 0.109 92.9% (−0.39, 0.05)

𝛽16 0.375 3.0×10−3 0.116 0.109 93.0% (−0.39, 0.11)

𝛽17 −0.034 8.2×10−3 0.131 0.109 88.9% (−0.39, 0.04)

𝛽18 0.314 3.4×10−3 0.117 0.109 92.1% (−0.33, 0.18)

𝛽19 −0.557 4.5×10−3 0.122 0.109 93.0% (−0.40, 0.04)

𝛽20 −0.156 4.0×10−3 0.113 0.109 94.0% (−0.35, 0.11)

Abbreviations: Bias, average of absolute bias; CI, average 95% confidence interval; Coverage, 95% coverage of corresponding
estimation; Mean, average of ̂𝜷; SD, sample standard deviation; ̂SD, average of the estimated standard deviations of the
corresponding estimation.

captures the trend of 𝜂 even in such a high-dimensional situation. A referee points out that the
estimated SDs are almost identical to each other. This is because the covariate components in X,Z
happen to be generated from the same distribution in this simulation.

Following a referee’s request, we further conduct two additional simulation studies, where
the purpose is to investigate the performance of our method in small sample size situation and
in the MNAR situation, respectively. Specifically, in Study 4, the data is generated from the same
model and parameter setting as in Study 2 but with sample size n1 = 50, N1 = 100, and N0 = 100,
hence the total size is N1 + N0 = 200. The results are provided in Table 4 and Figure 4. These
results show that when the sample total size is 200, our method deteriorates, although it still per-
forms better than the OEE and naive methods. Our method captures the missingness mechanism
well in terms of estimating 𝜂, although it has a wider confidence band than in Study 2 due to
the very small sample size. In the fifth simulation, we set (Z1,Z2,Z3)T = (X1,X2,X3)T as before,
and generate (Z4,Z5,Z6,Z7,Z8)T from the multivariate normal distribution with mean zero and
variance-covariance matrix equal to the identity I5. Thus, the dimension of Z is q = 8. Otherwise,
all the settings are the same as in Study 2. Thus, the data generation mechanism for the true
outcome status D depends on all the covariates in Z, while we use only (Z1,Z2,Z3,Z4,Z5,Z6)T
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F I G U R E 3 Performance of 𝜂 in Study 3. First line: 𝜂 versus 𝜸T
1 Z at 𝜸T

2 Z = −0.1, 0, 0.3, respectively, from left
to right. Second line: 𝜂 versus 𝜸T

2 Z at 𝜸T
1 Z = 0.8, 0.9, 1.1, respectively, from left to right. Black solid line: true 𝜂,

Blue solid line: mean of 𝜂, blue dashed line: 0.025 and 0.975 quantile of 𝜂.

to estimate the imputation model (2). This is an MNAR setting and it mimics the situation that
two covariates (Z7,Z8)T are not observed. The estimation of 𝜷−1 and 𝜂 are reported in Table 5 and
Figure 5. Compared to the correctly specified model in the second simulation, our method retains
the major trend in the estimation with slight biases. It indicates some degree of robustness of our
method when the missingness model is misspecified.

6 DILATED CARDIOMYOPATHY DATASET ANALYSIS

We apply the proposed model to the analysis of a dilated cardiomyopathy case-control study using
data form the University of Pennsylvania EHR. The subjects in this study are patients of Euro-
pean descent who are enrolled in the Penn Biobank. The main goal of the study is to assess the
association of the hiPSI TTNtv with the phenotype dilated cardiomyopathy. The adjusting covari-
ates include a patient’s gender, age, a collection of ICD-9 and ICD-10 codes related to dilated
cardiomyopathy, summarized measures derived from echocardiograms (EKGs), and genetic prin-
cipal components for helping control for population stratification. Additionally, a number of
individuals in the data set are missing summary measures for EKGs, so we include an indicator
for each patient to indicate whether or not each of the summary measures is available. Patients’
ICD-9 and ICD-10 codes were mapped to PheWAS codes (Haggerty et al., 2019). In this analy-
sis, a candidate case is defined as one who had at least one visit for dilated cardiomyopathy or
has had at least one of the following diagnosis codes: I42.0, 425.4, 425.8, 425.9, I42.8, and I42.9.
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ZHAO et al. 15

T A B L E 4 Results of Study 4, based on 1000 simulations with 100 control-cases and 100 candidate-cases.

𝜷1 𝜷2 𝜷3 𝜷4 𝜷5 𝜷6

True 1.3 −1.3 1 −2.5 2.5 −0.5

Semi Mean 1.406 −1.424 1.066 −2.534 2.715 −0.433

Bias 0.384 0.391 0.362 0.669 0.585 0.362

SD 0.669 0.706 0.597 1.092 1.008 0.588

̂SD 0.511 0.517 0.476 0.770 0.733 0.456

CI (0.45, 2.27) (−2.70, −0.40) (0.17, 1.86) (−4.58, −1.05) (1.35, 3.89) (−1.44, 0.44)

Coverage 88.5% 89.3% 89.7% 84.6% 86.8% 87.2%

OEE Mean 0.861 −0.881 0.664 −1.522 1.695 −0.280

Bias 0.460 0.444 0.361 1.031 0.860 0.280

SD 0.305 0.316 0.291 0.496 0.471 0.332

̂SD 2.427 2.580 2.465 2.697 2.133 2.678

CI (−3.87, 5.61) (−5.92, 4.15) (−4.15, 5.49) (−6.79, 3.73) (−2.47, 5.89) (−5.52, 4.97)

Coverage 100.0% 100.0% 100.0% 100.0% 99.8% 100.0%

Naive Mean 0.675 −0.686 0.522 −1.160 1.319 −0.158

Bias 0.643 0.622 0.485 1.361 1.205 0.344

SD 0.199 0.211 0.198 0.260 0.261 0.204

̂SD 0.203 0.203 0.198 0.235 0.240 0.194

CI (0.28, 1.07) (−1.09, −0.28) (0.13, 0.90) (−1.63, −0.68) (0.84, 1.77) (−0.54, 0.22)

Coverage 17.8% 19.2% 32.5% 1.2% 2.7% 55.1%

Abbreviations: Bias, average of absolute bias; CI, average 95% confidence interval; Coverage, 95% coverage of corresponding
estimation; Mean, average of ̂𝜷; SD, sample standard deviation; ̂SD, average of the estimated standard deviations of the
corresponding estimation.
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F I G U R E 4 Simulation performance in Study 4. Left panel: boxplot of ̂𝛽. Right panel: performance of 𝜂.
Black solid line is the truth for both panels. Blue solid line: mean of 𝜂, Lower blue dashed line: 0.05 quantile of 𝜂,
Upper blue dashed line: 0.95 quantile of 𝜂.
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16 ZHAO et al.

T A B L E 5 Results of misspecified Study 2, based on 1000 simulations with 1000 control-cases and 1000
candidate-cases

𝜷1 𝜷2 𝜷3 𝜷4 𝜷5 𝜷6

True 1.3 −1.3 1 −2.5 2.5 −0.5

Semi Mean 1.229 −1.225 0.948 −2.356 2.380 −0.481

Bias 0.109 0.110 0.095 0.175 0.165 0.087

SD 0.131 0.139 0.120 0.201 0.208 0.127

̂SD 0.135 0.136 0.127 0.187 0.189 0.130

CI (0.97, 1.49) (−1.50, −0.96) (0.70, 1.20) (−2.73, −1.99) (2.01, 2.75) (−0.74, −0.23)

Coverage 91.4% 89.9% 92.1% 84.9% 86.3% 92.4%

OEE Mean 0.791 −0.796 0.611 −1.224 1.506 −0.297

Bias 0.509 0.504 0.389 1.276 0.994 0.203

SD 0.081 0.082 0.076 0.113 0.126 0.099

̂SD 0.103 0.103 0.100 0.108 0.114 0.097

CI (0.59, 0.99) (−1.00, −0.59) (0.42, 0.81) (−1.44, −1.01) (1.28, 1.73) (−0.49, −0.11)

Coverage 0.0% 0.0% 1.5% 0.0% 0.0% 46.3%

Naive Mean 0.675 −0.680 0.519 −1.347 1.253 −0.207

Bias 0.625 0.620 0.481 1.153 1.247 0.293

SD 0.064 0.065 0.058 0.081 0.081 0.065

̂SD 0.064 0.064 0.062 0.077 0.076 0.062

CI (0.55, 0.80) (−0.81, −0.55) (0.40, 0.64) (−1.50, −1.19) (1.11, 1.40) (−0.33, −0.09)

Coverage 0.0% 0.0% 0.0% 0.0% 0.0% 0.3%

Abbreviations: Bias, average of absolute bias; CI, average 95% confidence interval; Coverage, 95% coverage of corresponding
estimation; Mean, average of ̂𝜷; SD, sample standard deviation; ̂SD, average of the estimated standard deviations of the
corresponding estimation.
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F I G U R E 5 Simulation performance in Study 5. Left panel: boxplot of ̂𝛽. Right panel: performance of 𝜂.
Black solid line is the truth for both panels. Blue solid line: mean of 𝜂, Lower blue dashed line: 0.05 quantile of 𝜂,
Upper blue dashed line: 0.95 quantile of 𝜂.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12673 by Portland State U

niversity M
illar, W

iley O
nline L

ibrary on [23/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

-~~·Scandinavian Journal of Statistics----------------------

-+-

I 
I \ 

\ 



ZHAO et al. 17

−10

−5

0

5

−7.5 −5.0 −2.5 0.0 2.5 5.0

γ1
Tz

η̂

F I G U R E 6 Estimated logit probability of genuine cases among candidate-cases in the dilated
cardiomyopathy dataset analysis, that is, 𝜂.

The dilated cardiomyopathy visits are any encounters with the words “Dilated Cardiomyopa-
thy” in the clinical notes. These encounters are identified using natural language processing, a
technique for text mining. The genuine cases were defined using an algorithm validated by the
clinician team, and the remaining patients in the case pool who did not meet the genuine case
definition were treated as noncases. Everyone who does not match the definition of a candidate
case is considered to be a control. The sample size of candidate cases is 1723, where 400 indi-
viduals were fully observed. We obtained the validated sample by randomly drawing a subset of
400 individuals from the subset of candidate cases. The genuine case status, D, was retained for
these 400 individuals, and D was masked for the remainder of the candidate cases. We also have
6120 controls. The bandwidth in the nonparametric estimator is set to be SD(𝜸TZ)1323−1∕3. Before
applying the proposed semiparametric method in estimating 𝜸i, i = 1, 2,…, d, we first determine
the number of indices d by minimizing the VIC (Ma & Zhang, 2015), an information crite-
rion for sufficient dimension reduction models that takes goodness of fit and dimensionality
into account simultaneously under mild assumptions. The best selection of d corresponds to the
smallest VIC.

The most preferable choice of d is 1, corresponding to VIC= 123.462. The result of 𝜂 estimation
is reported in Figure 6. According to the plot, the probability of being a genuine case is decreasing
when 𝜸T

1 Z increases with small perturbation. Large variability occurs at both ends due to fewer
data points observed. The results of estimating 𝜷 from three methods are reported in Table 6. It
is shown that the coefficient for the hiPSI TTNtv is significant with the same sign in all meth-
ods. Meanwhile, the estimation efficiency of the odds ratio parameter in the proposed method is
higher than the OEE method. OEE estimates Age to be nonsignificant with the opposite sign com-
pared to other methods. All methods conclude that only the first genetic principle component is
significant. Compared to the naive analysis, which treats all missing values as genuine cases, the
proposed method does not lose too much efficiency.
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18 ZHAO et al.

T A B L E 6 Results of the dilated cardiomyopathy dataset analysis.

Proposed OEE naive

Parameter est ŜD CI est ŜD CI est ŜD CI
𝛽0 −3.34 0.196 (−3.72, −2.95) −2.742 0.292 (−3.31, −2.16) −1.975 0.162 (−2.29, −1.65)

Age 0.098 0.038 (0.02, 0.17) −0.033 0.058 (−0.14, 0.08) 0.123 0.031 (0.06, 0.18)

pc1 −9.015 3.491 (−15.85, −2.17) −9.304 4.704 (−18.52, −0.08) −9.605 2.831 (−15.15, −4.05)

hiPSI 2.381 0.237 (1.91, 2.84) 2.741 0.343 (2.06, 3.41) 1.891 0.214 (1.47, 2.31)

gender −0.754 0.085 (−0.92, −0.58) −0.570 0.224 (−1.00, −0.13) −0.459 0.064 (−0.58, −0.33)

pc2 6.145 3.520 (−0.75, 13.04) 11.315 4.428 (2.63, 19.99) 4.461 2.800 (−1.02, 9.94)

pc3 −0.933 3.618 (−8.02, 6.15) 1.636 4.751 (−7.67, 10.94) −0.080 2.704 (−5.37, 5.21)

pc4 1.851 3.559 (−5.12, 8.82) 4.060 4.480 (−4.72, 12.84) −3.074 2.708 (−8.38, 2.23)

pc5 0.64 3.067 (−5.37, 6.65) 0.816 3.928 (−6.88, 8.51) −0.894 2.719 (−6.22, 4.43)

pc6 −3.478 3.055 (−9.46, 2.50) −1.807 4.224 (−10.08, 6.47) −2.737 2.682 (−7.99, 2.51)

pc7 0.726 3.219 (−5.58, 7.03) −0.674 4.098 (−8.70, 7.35) −1.695 2.688 (−6.96, 3.57)

pc8 −5.62 3.177 (−11.84, 0.60) −2.695 4.274 (−11.07, 5.68) −4.527 2.678 (−9.77, 0.72)

pc9 −2.103 3.513 (−8.98, 4.78) −5.773 4.757 (−15.09, 3.55) 0.599 2.760 (−4.81, 6.00)

pc10 0.461 3.300 (−6.00, 6.92) −1.128 4.077 (−9.11, 6.86) −1.213 2.708 (−6.52, 4.09)

Abbreviations: CI, 95% confidence interval; est, parameter estimation; ̂SD, estimated standard deviations of the corresponding
estimation.

7 CONCLUSION

We propose a nested semiparametric method for analyzing EHR-based case-control studies where
the true outcome status of some of the candidate cases are missing. Our method imputes the
missing values by introducing an additional index, denoted as noncases, and by modeling the
genuine case/noncase pair semiparametrically. The imputation process is very flexible because of
the semiparametric structure and the dimension reduction association. Meanwhile, applying the
efficient sufficient semiparametric dimension reduction estimator helps to retain stability in odds
ratio parameter estimation in the main model even though the missingness scheme is unknown.
Many applicable alternative approaches have been developed in the missing data literature if the
imputation model had been known or parametric, such as maximum likelihood estimator (MLE)
and the fully Bayesian method (Ibrahim et al., 2005; Mitra & Reiter, 2011). However, a prespecified
functional form increases the chance of model misspecification (Si & Reiter, 2013), and misspec-
ifications will lead to biased results (Chen & Ibrahim, 2014). In order to improve the robustness,
modifications have been made in both MLE and Bayesian methods, such as incorporating a spline
into the algorithm to estimate the nonparametric components (Rizopoulos & Ghosh, 2011; Su &
Hogan, 2008). The modified MLE and modified Bayesian methods are alternative approaches to
our semiparametric imputation approach. They reflect different general approaches in handling
missing data in the literature. Although we only considered binary outcomes that are subject to
missingness, the flexibility of the semiparametric modeling allows for a straightforward extension
to more complex data formats.
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