8,462 research outputs found

    FastMMD: Ensemble of Circular Discrepancy for Efficient Two-Sample Test

    Full text link
    The maximum mean discrepancy (MMD) is a recently proposed test statistic for two-sample test. Its quadratic time complexity, however, greatly hampers its availability to large-scale applications. To accelerate the MMD calculation, in this study we propose an efficient method called FastMMD. The core idea of FastMMD is to equivalently transform the MMD with shift-invariant kernels into the amplitude expectation of a linear combination of sinusoid components based on Bochner's theorem and Fourier transform (Rahimi & Recht, 2007). Taking advantage of sampling of Fourier transform, FastMMD decreases the time complexity for MMD calculation from O(N2d)O(N^2 d) to O(LNd)O(L N d), where NN and dd are the size and dimension of the sample set, respectively. Here LL is the number of basis functions for approximating kernels which determines the approximation accuracy. For kernels that are spherically invariant, the computation can be further accelerated to O(LNlogd)O(L N \log d) by using the Fastfood technique (Le et al., 2013). The uniform convergence of our method has also been theoretically proved in both unbiased and biased estimates. We have further provided a geometric explanation for our method, namely ensemble of circular discrepancy, which facilitates us to understand the insight of MMD, and is hopeful to help arouse more extensive metrics for assessing two-sample test. Experimental results substantiate that FastMMD is with similar accuracy as exact MMD, while with faster computation speed and lower variance than the existing MMD approximation methods

    Density-Based Region Search with Arbitrary Shape for Object Localization

    Full text link
    Region search is widely used for object localization. Typically, the region search methods project the score of a classifier into an image plane, and then search the region with the maximal score. The recently proposed region search methods, such as efficient subwindow search and efficient region search, %which localize objects from the score distribution on an image are much more efficient than sliding window search. However, for some classifiers and tasks, the projected scores are nearly all positive, and hence maximizing the score of a region results in localizing nearly the entire images as objects, which is meaningless. In this paper, we observe that the large scores are mainly concentrated on or around objects. Based on this observation, we propose a method, named level set maximum-weight connected subgraph (LS-MWCS), which localizes objects with arbitrary shapes by searching regions with the densest score rather than the maximal score. The region density can be controlled by a parameter flexibly. And we prove an important property of the proposed LS-MWCS, which guarantees that the region with the densest score can be searched. Moreover, the LS-MWCS can be efficiently optimized by belief propagation. The method is evaluated on the problem of weakly-supervised object localization, and the quantitative results demonstrate the superiorities of our LS-MWCS compared to other state-of-the-art methods

    Wafer defect recognition method based on multi-scale feature fusion

    Get PDF
    Wafer defect recognition is an important process of chip manufacturing. As different process flows can lead to different defect types, the correct identification of defect patterns is important for recognizing manufacturing problems and fixing them in good time. To achieve high precision identification of wafer defects and improve the quality and production yield of wafers, this paper proposes a Multi-Feature Fusion Perceptual Network (MFFP-Net) inspired by human visual perception mechanisms. The MFFP-Net can process information at various scales and then aggregate it so that the next stage can abstract features from the different scales simultaneously. The proposed feature fusion module can obtain higher fine-grained and richer features to capture key texture details and avoid important information loss. The final experiments show that MFFP-Net achieves good generalized ability and state-of-the-art results on real-world dataset WM-811K, with an accuracy of 96.71%, this provides an effective way for the chip manufacturing industry to improve the yield rate

    Facile synthesis of freestanding Si nanowire arrays by one-step template-free electro-deoxidation of SiO2 in molten salt

    Get PDF
    This communication presents a novel kind of silicon nanomaterial: freestanding Si nanowire arrays (Si NWAs), which are synthesized facilely by one-step template-free electro-deoxidation of SiO2 in molten CaCl2. The self-assembling growth process of this material is also investigated preliminarily

    Changes in axial length after vitrectomy for rhegmatogenous retinal detachment combined with choroidal detachment

    Get PDF
    AIM: To report the postoperative axial length (AL) changes in rhegmatogenous retinal detachment combined with choroidal detachment (RRD-CD) patients. METHODS: The medical records of 97 consecutive patients from January 2015 to December 2018 were reviewed. Patients included were divided into RRD-CD and RRD only groups. All patients had received AL measurements before pars plana vitrectomy (PPV) and before silicone oil removal (SOR). The changes in AL of the two groups were compared. In addition, the potential factors related to AL changes were analyzed. RESULTS: AL elongation after PPV was 1.01 mm [interquartile range (IQR): 0.37, 1.79; P=0.02] in the RRD-CD group, which was greater than in RRD only group (0.15 mm, IQR: 0.04, 0.41; P<0.001). AL increased 0.06 mm per 1 mm Hg intraocular pressure changes in the RRD-CD group (R2=0.11, P=0.03). RRD-CD patient was 11.42 times (3.54-46.80) more likely to experience post-PPV AL elongation of more than 1 mm [P<0.001, Akaike information criterion (AIC)=92.33, area under the curve (AUC)=0.839]. CONCLUSION: RRD-CD patients are very likely to have a postoperative elongation of AL. The primary intraoclular lens implantation using presurgery AL data may cause a significant refractive error in RRD-CD patients who underwent PPV

    Cdc42-mediated supracellular cytoskeleton induced cancer cell migration under low shear stress

    Get PDF
    Tumor microenvironment is composed of biological, chemical and physical factors. Mechanical factors are more and more focused these years. Therefore, mimicking mechanical factors' contribution to cancer cell malignancy will greatly improve the advance in this field. Although the induced malignant behaviors are present under many stimuli such as growth or inflammatory factors, the cell key physical migration mechanisms are still missing. In this study, we identify that low shear stress significantly promotes the formation of needle-shaped membrane protrusions, which is called filopodia and important for the sense and interact of a cell with extracellular matrix in the tumor microenvironment. Under low shear stress, the migration is promoted while it is inhibited in the presence of ROCK inhibitor Y27632, which could abolish the F-actin network. Using cell imaging, we further unravel that key to these protrusions is Cell division cycle 42 (Cdc42) dependent. After Cdc42 activation, the filopodia is more and longer, acting as massagers to pass the information from a cell to the microenvironment for its malignant phenotype. In the Cdc42 inhibition, the filopodia is greatly reduced. Moreover, small GTPases Cdc42 rather than Rac1 and Rho directly controls the filopodia formation. Our work highlights that low shear stress and Cdc42 activation are sufficient to promote filopodia formation, it not only points out the novel structure for cancer progression but also provides the experimental physical basis for the efficient drug anti-cancer strategies

    A Single Amino Acid Substitution Changes Antigenicity of ORF2-Encoded Proteins of Hepatitis E Virus

    Get PDF
    Extensive genomic diversity has been observed among hepatitis E virus (HEV) strains. However, the implication of the genetic heterogeneity on HEV antigenic properties is uncertain. In this study, monoclonal antibodies (Mabs) against truncated ORF2-encoded proteins (aa452–617, designated p166 proteins) derived from HEV strains of Burma (genotype 1a, p166Bur), Pakistan (1b, p166Pak) and Morocco (1c, p166Mor) were raised and used for identification of HEV antigenic diversity. Six Mabs reacted to these 3 p166 proteins as well as p166 proteins constructed from strains derived from Mexico (genotype 2), US (genotype 3) and China (genotype 4), indicating the existence of pan-genotypic epitopes. Two Mabs, 1B5 and 6C7, reacted with p166Bur and p166Mor, but not p166Pak or p166s derived from genotypes 2, 3, and 4, indicating that these 2 Mabs recognized strain-specific HEV epitopes. Both the common and specific epitopes could not be mapped by 23 synthetic peptides spanning the p166Bur sequence, suggesting that they are confirmation-dependent. Comparative sequence analysis showed that p166Bur and p166Mor shared an identical aa sequence along their entire lengths, whereas for p166Pak the aas occupying positions 606 and 614 are different from aas at corresponding positions of p166Bur and p166Mor. Reactivity between 1B5 and p166Bur was abrogated with mutation of p166Bur/A606V, whereas p166Pak acquired the reactivity to 1B5 with mutation of p166Pak/V606A. However, mutations of p166Bur/L614M and P166Pak/M614L did not affect the immunoreactivity. Therefore, the aa occupying position 606 plays a critical role in maintaining the antigenicity of the HEV p166 proteins

    Enhanced Intervalley Scattering of Twisted Bilayer Graphene by Periodic AB Stacked Atoms

    Full text link
    The electronic properties of twisted bilayer graphene on SiC substrate were studied via combination of transport measurements and scanning tunneling microscopy. We report the observation of enhanced intervalley scattering from one Dirac cone to the other, which contributes to weak localization, of the twisted bilayer graphene by increasing the interlayer coupling strength. Our experiment and analysis demonstrate that the enhanced intervalley scattering is closely related to the periodic AB stacked atoms (the A atom of layer 1 and the B atom of layer 2 that have the same horizontal positions) that break the sublattice degeneracy of graphene locally. We further show that these periodic AB stacked atoms affect intervalley but not intravalley scattering. The result reported here provides an effective way to atomically manipulate the intervalley scattering of graphene.Comment: 4figure

    The association between plasma IgG N-glycosylation and neonatal hypoxic–ischemic encephalopathy: A case-control study

    Get PDF
    Introduction: Hypoxic-ischemic encephalopathy (HIE) is one of severe neonatal brain injuries, resulting from inflammation and the immune response after perinatal hypoxia and ischemia. IgG N-glycosylation plays a crucial role in various inflammatory diseases through mediating the balance between anti-inflammatory and pro-inflammatory responses. This study aimed to explore the effect of IgG N-glycosylation on the development of HIE. Methods: This case-control study included 53 HIE patients and 57 control neonates. An ultrahigh-performance liquid chromatography (UPLC) method was used to determine the features of the plasma IgG N-glycans, by which 24 initial glycan peaks (GPs) were quantified. Multivariate logistic regression was used to examine the association between initial glycans and HIE, by which the significant parameters were used to develop a diagnostic model. Though receiver operating characteristic (ROC) curves, area under the curve (AUC) and 95% confidence interval (CI) were calculated to assess the performance of the diagnostic model. Results: There were significant differences in 11 initial glycans between the patient and control groups. The levels of fucosylated and galactosylated glycans were significantly lower in HIE patients than in control individuals, while sialylated glycans were higher in HIE patients (p \u3c 0.05). A prediction model was developed using three initial IgG N-glycans and fetal distress, low birth weight, and globulin. The ROC analysis showed that this model was able to discriminate between HIE patients and healthy individuals [AUC = 0.798, 95% CI: (0.716–0.880)]. Discussion: IgG N-glycosylation may play a role in the pathogenesis of HIE. Plasma IgG N-glycans are potential noninvasive biomarkers for screening individuals at high risk of HIE
    corecore