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Wafer defect recognition is an important process of chip manufacturing. As 
different process flows can lead to different defect types, the correct identification 
of defect patterns is important for recognizing manufacturing problems and 
fixing them in good time. To achieve high precision identification of wafer defects 
and improve the quality and production yield of wafers, this paper proposes a 
Multi-Feature Fusion Perceptual Network (MFFP-Net) inspired by human visual 
perception mechanisms. The MFFP-Net can process information at various 
scales and then aggregate it so that the next stage can abstract features from the 
different scales simultaneously. The proposed feature fusion module can obtain 
higher fine-grained and richer features to capture key texture details and avoid 
important information loss. The final experiments show that MFFP-Net achieves 
good generalized ability and state-of-the-art results on real-world dataset WM-
811K, with an accuracy of 96.71%, this provides an effective way for the chip 
manufacturing industry to improve the yield rate.
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1. Introduction

With the rapid development of technology and society, semiconductor manufacturing has 
become one of the most essential industries in the world (Chen et al., 2020) and wafer processing 
is the basis of it (Bengtsson, 1992). Due to the increasing complexity of semiconductor processes 
and an increase in the number of wafers produced (Chang et al., 2005), the amount of online 
and offline data required for diagnosis yield conditions has grown exponentially (Liao et al., 
2013), with many of these wafers found to be defective on inspection. Wafer fabrication usually 
requires a series of processes such as photolithography, deposition, ion implantation, diffusion, 
machine handing, and chemical mechanical planarization (Cheon et al., 2019). Defects in wafer 
fabrication arise from variations in the manufacturing process, and defects in a single wafer can 
render the product in question completely ineffective or even discard the entire batch, so it is 
important to detect defects and improve the yield. But defects in wafer diagrams have a high 
tendency to derive necessary information about specific manufacturing process problems from 
different defect diagrams (Chen and Liu, 2000). Typical spatial patterns in Wafer Maps (WMs)
consist of edge-ring, center, scratch, donut, and near-full, etc. (Wang et al., 2019) A center often 
arises due to problems in the thin film deposition, a ring is due to problems in the etching step, 
a scratch is a result of machine handing problems (Wang and Bensmial, 2006) and particle-type 
defects can be fixed by cleaning the surface with an air blower (Cheon et al., 2019). As the 
process issue happens, engineers can analyze the defective type of wafers to identify the root 
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causes of the problem and reduce the loss caused by excursion (Chien 
et al., 2007) as soon as possible. Since all tasks of improving yield 
require engineers to analyze and process large amounts of data, defect 
pattern recognition is usually performed through statistical data 
analysis (Chen and Liu, 2000). Cunningham and MacKinnon (2002) 
divided the common visual defect metrology into three types.

 1. Quadrat statistics: the defect distribution on the wafer is analyzed 
to predict the yield model, such as by using the conventional 
Poisson model and Murphy model (Berglund, 1999). Many 
models (Collica, 1990; Weber et al., 1995; Nurani et al., 1998; 
Wang et  al., 2002) have been based on this type of defect 
metrology statistics, but this type of defect metrological method 
has ignored spatial pattern and defect clustering phenomena 
(Chen and Liu, 2000), and when the data of the wafer does not 
meet the hypothetical assumptions, it does not work well.

 2. Cluster statistics: wafer defects are often determined by defect 
coordinates, when one or more wafer defects are defined, they 
can be  classified according to the characteristics of the 
coordinates. This type of method seeks clusters with high 
defect density and ignores information about the signatures of 
clusters, such as the shape and size, etc.

 3. Spatial pattern recognition: besides defect clusters, the spatial 
pattern of the defects usually provides a good approach to 
wafer problem solving. Ken et al. (2002) outline that special 
shapes appearing on the defect map pattern may come from 
the machine or process, according to different map patterns, 
then can find out the root of problems.

Accurate and efficient wafer defect detection technology can 
identify production process problems and make adjustments to the 
production process in a timely manner, thus improving the quality 
and yield of production wafers. To address the problem of wafer 
defect detection and identification, operators have traditionally 
visually inspected defects and classified and identified them according 
to predetermined methods. However, this approach involves a great 
deal of effort and costs being invested in pre-training defect 
inspection and the classification of operators (Chen and Liu, 2000). 
Due to the influence of human factors, the results identified by 
different operators are different even for the same type of defect 
(Weber et al., 1995). Therefore, to save costs and improve accuracy, 
researchers have conducted a series of studies. In the classification of 
technology and automatic detection of semiconductor 
manufacturing, frequency domain filtering using optical methods, 
laser irradiation scanning, and various digital image processing 
techniques are applied to wafer surface image detection and mostly 
employed by charge coupled device cameras (Qu, 2002). Most 
automatic inspection systems scan the wafer surface to collect the 
coordinates of areas where defects may exist, then place a camera at 
the center of the coordinates to take pictures, before automatically 
performing defect detection. Due to the microcosmic nature of the 
scanning electron microscope sensing field, it is difficult to analyze 
and detect the surface characteristics of the whole wafer, and the 
classification accuracy is poor (Cheon et al., 2019), meaning manual 
detection is required to measure the physical parameters of the WMs 
like location, size, and color later (Lee et al., 2017). Moreover, Auto 
Detect Camera (ADC) based approaches apply machine learning and 
image recognition for wafer defect classification and are introduced 

to reduce labor and manufacturing costs. Knights Technology (Chen 
and Liu, 2000) proposed a software program named spatial pattern 
recognition, the core of the software is a signature classifier, which 
can be used to train models for different batches of wafer defects, but 
it takes a lot of time and has poor generalization in training new 
models. Lee and Inc (1996) propose a templates matching algorithm 
to detect wafer defects, which is based on the supervised learning 
method, and improves the detection accuracy; however, one 
weakness of this approach is that it requires a certain amount of the 
standard templates to be provided, and once the data volume is large, 
the effect is not so good. Due to the continuous reduction of wafer 
size (Qiang et al., 2010), the effect of traditional optical detection 
technology is gradually getting worse.

The rapid popularity of the Convolutional Neural Network (CNN) 
and its excellent effects have attracted people’s attention. CNN consists 
of three types of layers including convolution layers, pooling layers, 
and fully connected layers (Saqlain et al., 2020). The convolution layer 
can automatically extract image features, the pooling layer can extract 
the main information required to create the image while reducing the 
number of parameters, and fully connected layers finally classify the 
input image using the extracted features (Krizhevsky et al., 2012). 
These three layers can be combined to extract the high-dimensional 
features of the images. In particular, the CNN models have performed 
well in classifying image data (Sengupta et al., 2018), and have been 
introduced into various industries due to their wide application. For 
example, to cracks in civil infrastructure (Cha et al., 2017) and classify 
surface defects in steel plates. The semiconductor industry has also 
tried to introduce CNN to improve the process for defect recognition 
of spring-wire sockets (Tao et al., 2018). Lee et al. (2017) designed a 
new CNN structure, which can identify global and invariant features 
in the sensor signal data, find the multivariable process fault and 
diagnose the fault source. Currently, deep learning methods have 
achieved good results in wafer detection, for example, Takeshi 
(Nakazawa and Kulkarni, 2018) et  al. applied eight convolutional 
networks with activation functions to classify wafers and used 
simulated WMs to train a model and tested the performance on 1,191 
real WMs. Cheon et al. (2019) proposed a CNN-based automatic 
defect classification method that can extract features from WMs and 
accurately classify known defect classes. The datasets used by all these 
studies were very small and cannot therefore fully represent the actual 
situation of production. CNN models can achieve higher training 
accuracy in the presence of bigger datasets (Najafabadi et al., 2015). 
Saqlain et al. (2020) proposed a deep layered CNN-based wafer defect 
identification (CNN-WDI) model, before training and testing the 
model on a real wafer dataset called WM-811K, a large dataset that 
consisted of eight different wafer defects and 811,457 wafer maps in 
total. Yu and Lu (2016) proposed a manifold learning-based wafer 
map defect detection and recognition system and their experimental 
results from WM-811K verified that the overall accuracy was 90.5%.

Noise is common in the wafer maps and can make an impact on 
the recognition effect, denoising can effectively preserve the defect 
type of the wafer and improve the accuracy. Thus, image denoising is 
a key step in the defect recognition procedure. Wang et al. (2006) used 
a spatial filter that compares the defect densities in each die of the 
wafer. On the other hand, noise is also a test of model robustness. 
When the robustness of the model is good, the impact of noise on the 
performance will be small. Multiscale analysis is a technique in pattern 
recognition and image processing that analyzes an image or pattern at 
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various scales (Li et al., 2016a,b,c). This benefits multiple applications, 
such as object identification, image categorization, and feature 
extraction, which can help understand phenomena or processes that 
occur over a range of scales and for extracting features (Ataky et al., 
2022). Eseholi et al. (2020) decomposed the surface profile into three 
multiscale filtered image types: Low-pass, Band-pass, and High-pass 
filtered versions, respectively, by using a Gaussian Filter. Compared to 
conventional roughness descriptors, their method increased surface 
discrimination from 65 to 81%. The term “scale” has had many 
meanings in metrological studies. Scale can refer to the ratio of lengths 
on measurement renderings to the actual lengths on the actual surface 
(Brown et al., 2018). In this paper, multi-scale means that the image is 
processed by convolution to obtain feature maps with different 
channel numbers. We call these feature maps with different channel 
numbers “multi-scale.” Through comprehensive utilization of these 
multi-scales, we call them “Multi-Scale Feature Fusion.” To extract 
patterns from observable measurements we need to be able to define 
and identify stable features in observable measurements (Scott, 2004), 
convolution can extract stable abstract features of objects, so we use a 
convolution neural network to extract multi-scale information.

The contributions of this paper are as follows:

 1. A Multi-Feature Fusion module (MFF) is proposed based on 
the attributes of wafers and can combine different fine-grained 
features, capturing the key information from local and global 
regions, which can improve the robustness of wafer 
defect recognition.

 2. A Multi-Feature Fusion Perceptual Network (MFFP-Net) is 
designed to integrate information from different dimensions, 
and the next stage can abstract features from the different scales 
simultaneously. Therefore, the MFFP-Net can extract more 
information to achieve high precision wafer recognition. It also 
effectively resists the interference of noise.

 3. Comprehensive experiments demonstrate that the proposed 
method can obtain good results for identifying wafer map 
defect patterns, which has a recognition accuracy of 96.71% 
and achieves state-of-the-art wafer recognition performance 
in WM-811K.

2. Methods

In this section, we  first introduce the overall structure of 
MFFP-Net and then introduce the composition of MFF in detail.

2.1. Overview

We propose a Multi-Feature Fusion Perceptual Network (MFFP-
Net) to address the recognition of wafer defects. As shown in Figure 1, 
MFFP-Net consists of four convolution layers and two branches. The 
network takes the original wafer defect map as input. The direction of 
the arrow represents the operation direction of the feature layer in 
turn. First, the Conv1 ~ Conv4 layer serves as the feature pre-extractor 
to output 28 × 28 × 128 feature maps. Then, the feature maps are input 
into Multi-scale Branch and Global Branch to extract different 
perceptual field features. The Multi-scale Branch consists of three MFF 

modules. The Global Branch is composed of a Max Pooling layer, 
Conv5, and Conv6. Finally, we fused the feature maps with 256, 512, 
512, and 1,024 channels to predict the wafer defect type.

2.2. Backbone

The Conv1 ~ Conv4 layers serve as the backbone. Then the 
feature maps are input into two branches to extract different 
perceptual field features. The Multi-scale Branch gets fine-grained 
features through MFFs, and the Global Branch gets features of higher 
dimension through further convolution operation. Finally, the 
recognition results are obtained by fusing the feature and decision 
level. GAP denotes global average pooling layers and is an element 
wise addition. We use the traditional convolution neural network, the 
most basic compositions of the neural network are convolution 
operation, Batch Normalization, Max pooling, and Global Average 
Pooling (GAP). The details of Conv1 ~ Conv4 are shown in Figure 2.

Conv1 ~ Conv4 are composed of 3 × 3 convolution operation, 
Batch Normalization (BN), and Swish activation function. However, 
the difference in this approach relates to the convolution operation 
parameters: including the stride operation, the input channel, and the 
output channel of each convolution. When the wafer image is input 
into the network, it will pass through Conv1 ~ Conv4 in turn. Finally, 
the shallow features are output by Conv4., and Conv5 and Conv6 
both consist of convolution operation, BN, and Swish activation 
function. Conv5 uses 3 × 3 convolution and the input and output 
channels are 128. Conv6 uses 1 × 1 convolution to make the network 
deeper and the input and output channels are 128 and 256, 
respectively.

2.3. MFF module

By controlling the longest gradient path, the deeper network can 
learn and converge effectively (Wang et al., 2022). The MFF module 
aims to obtain higher fine-grained and richer features, it uses expand 
and merge channels to achieve the ability to continuously enhance the 
learning ability of the network. As shown in Figure 3, the MFF module 
is composed of three branches that are composed of one, two, and four 
convolutions, respectively. The outputs obtained from the three 
branches are joined together according to dimensions. The final 
output is obtained after the Max Pooling layer to reduce parameters. 
The module follows a philosophy that visual information should 
be processed at various scales and then aggregated so that the next 
stage can abstract features from the different scales simultaneously.

The MFF module can process information at various scales and 
then aggregate it so that the next stage can abstract features from the 
different scales simultaneously. F denotes convolutional layers, and y 
denotes output feature maps. The arrow points to the directions in 
which the feature map passes.

The MFF module can be formulated by Equations (1–4).

  y F x1 1� � �  (1)

  y F y2 3

1
1� � �  (2)
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  F MaxPool Concat y y youtput � � ��� ��1 2 3, ,  (4)

Where x is the input of the MMF module, Foutput is the output of 
the MFF module.

Concat is the tensor splicing function, the dimension of the tensor 
can be specified for splicing.

The details of the convolution layer are shown in Figure 4.
If the number of feature map channels input to MFF is C. The 

output channels of F1x1 become C/2. In the convolution layer F1
3x3 next 

to F1x1 the input and output channels are both C/2. The input and 
output channels of F2

3x3 are C/2 and C, respectively. The input and 
output channels of F3

3x3 are C. Finally, the feature map with a channel 
number of 2C is obtained.

The MMF takes the feature map obtained through the convolution 
layers as the input. We assume the depth (the number of channels) of 
the feature map is C.

The model change in depth of the feature map through MMF is 
shown in Figure 5.

First, a 1 × 1 convolution layer is executed after the input to 
adjust the number of channel dimensions and make the depth C/2. 
The introduction of 1 × 1 convolution enables the combination of 
channels and the interaction of information between channels. 

FIGURE 1

Structure of the proposed method.

FIGURE 2

The detailed parameters of Conv1~Conv4, Conv5 and Conv6.
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Second, after 1 × 1 convolution, the number of channels in the 
feature map halves, and then we use 3 × 3 convolution to further 
extract high-dimensional features. Third, based on the second step, 
after two convolution operations, the network becomes deeper and 
the number of channels becomes C. Fourth, the feature maps 
obtained in the first, second, and third steps are joined together 
according to the channel direction, the number of channels is 2C, 
and more fine-grained features are obtained. Last, feature maps with 
2C channels pass through the convolution layer to achieve the 
final output.

The number of channels in the feature map is C. Through the 
first and second branches, the channels of input halves, then 
combine according to the channel direction, and the number of 
channels is still C. Through the third branch, the depth remains 
unchanged. Finally, splice feature maps with channel number C 

together and double the number of channels. C denotes the 
channels of the input. The arrow indicates the direction of channel 
number changes.

2.4. Auxiliary classifier and lead head

Deep supervision is a technique that is often used in training 
deep networks. We add auxiliary head in the middle layers of the 
network, auxiliary head is conducted and marked as A, B, C, and D, 
as shown in Figure 6. The shallow network weights with assistant loss 
as the guide. In this paper, we  refer to the classification header 
responsible for the final output as lead head and the head used to 
assist training is called auxiliary classifier. Auxiliary classifiers located 
at different depth levels will learn different information, and the 
learning ability of an auxiliary classifier is not strong as a lead head. 
In order to avoid losing the information that needs to learn and 
combine useful information together, it is crucial to find out how to 
assign weights to auxiliary classifiers. We will discuss the details of 
assigning auxiliary classifier weights in the part of Ablation 
Experiments. As for the output of lead head, we  filter the high 
precision results from the high recall as the final output.

3. Experiments

In this section, we  first introduce two datasets and their 
characteristics. We  then explain the details of the experimental 
implementation. Thirdly, we adjust the parameters of the experiment 
to obtain the best results and visualize the effect of model recognition. 
Finally, we analyze the error of the experimental results.

3.1. Dataset

To compare our results with previous studies and verify the 
effectiveness of the method outlined in the present study, 

FIGURE 3

The structure of MFF module.

FIGURE 4

The details of 3 × 3 convolution layer and 1 × 1 convolution layer.
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we performed experiments on real-world wafer datasets WM-811K 
(MIR Corpora, 2015; Wu et al., 2015). The WM-811K dataset is the 
largest publicly available wafer data, consisting of 811,457 wafer maps 
collected from 46,293 different lots in real-world fabrication. This 
dataset contains eight different and labeled wafer failure patterns, a 
total of 24,653 wafer maps, the rest were unlabeled and defect-free 
wafer maps. Figure 7 shows the sample wafer maps from each defect 
type including Center, Donut, Edge-Ring, Scratch, Near-full, Loc, 
Edge-Ring, and Random. The yellow part represents the defect, and 
the green part represents the defect-free part. Domain experts were 
recruited to annotate the pattern type of the wafer maps in the 

WM-811K dataset. We also found a data set about wafers on (Karen 
and Andrew, 2015) (wafer-Kaggle), shown in Figure 8.

We used 25,519 wafer defect maps labeled in the WM-811K 
dataset to verify the performance of the model. The numbers of eight 
types are 4,294, 555, 5,189, 9,680, 3,593, 149, 866, and 1,193, 
respectively, and the proportion was 25:3:30:56:20:1:5:7. The eight 
wafer defect types in this data set were shown to be  seriously 
imbalanced. The main problem in image resolution is noise and the 
wafer maps in the WM-811K dataset contain serious noise, as shown 
in Figure 9. If the robustness of the model is poor, the noise will greatly 
affect the performance of the model.

FIGURE 5

The change of channels number through MMF feature map.

FIGURE 6

The proposed model contains four auxiliary classifiers.
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3.2. Implementation details

We divided WM-811K randomly into a training set, validation 
set, and test set in the ratio of 8:1:1. For the training set, we first 
used random clipping wafer maps, as part of which the pixel size 
became 224 × 224, then a random horizontal flip. For the test set, 
we  changed the wafer map pixels to 256 × 256, then it became 
224 × 224 through the center crop. The model was developed by 
using PyTorch. An NVIDIA 3080 GPU with 16 GB memory was 
engaged to accelerate the calculation. The learning rate was set to 
a constant of 0.0001, the weight decay coefficient was 0.05, and the 
minibatch size is set to 32. We train the model for a total of 100 
epochs, during the training, we  use Cosine Annealing with a 
period of 32. The number of parameters of the proposed net is 
48.09 M.

3.3. Result and analysis

3.3.1. Ablation experiments
The features produced by the layers in the middle of the network 

are very discriminative, even low dimensional embeddings might 
contain a large amount of information. To study the impact of 
auxiliary classifiers connected to the middle layer on classification 

results, the experiment with only one auxiliary classifier is conducted 
and marked as A, B, C, and D, as shown in Figure 6.

The impact of four different auxiliary classifiers is shown in 
Table 1. When there is only one auxiliary classifier, auxiliary classifier 
B achieved the best accuracy of 92.21%, and auxiliary classifier D 
achieved the lowest accuracy of 79.60%. When we use four auxiliary 
classifiers at the same time and give them the same weight, the 
accuracy is higher than when using only one auxiliary classifier, at 
94.56%. Combining the features from the different scales could 
improve recognition accuracy.

As shown in Table 2, when only auxiliary classifier D is used, the 
recognition accuracy of the model is far lower than that of other 
auxiliary classifiers. To study the influence of auxiliary classifier D on 
classification accuracy, we  give different weights to D. When the 
weights of D are set as 1.3, 0.7, 0.5, 0.3, 0.1, and 0, respectively. The 
accuracy of the model is shown in Table 2, which indicates that when 
the A, B, C, and D ratios are 1:1:1:0.3, the model achieves the highest 
wafer recognition accuracy of 95.73%.

As shown in Table 3, when only the auxiliary classifier B is used, 
the recognition accuracy of the model is far higher than that of other 
auxiliary classifiers. We fixed the weight of the auxiliary classifier D to 
0.3, then set different weights for B. When the weights of B are set as 
1.2, 1.4, 1.6, and 1.8 respectively, the accuracy of the model is shown 
in Table 3. It is indicated that when the A, B, C, and D ratios are 
1:1.4:1:0.3, the model achieves the best performance.

FIGURE 7

Eight different wafer defect types.

FIGURE 8

There are seven different wafer defect types in wafer-kaggle.

TABLE 1 The impact of four different auxiliary classifiers on wafer 
classification accuracy.

(A, B) (C, D) Precision

(1, 0) (0, 0) 84.58%

(0, 1) (0, 0) 92.21%

(0, 0) (1, 0) 88.02%

(0, 0) (0, 1) 79.60%

(1, 1) (1, 1) 94.56%

TABLE 2 The impact of auxiliary classifier D on wafer classification 
accuracy.

(A, B) (C, D) Precision (%)

(1, 1) (1, 1.3) 87.40

(1, 1) (1, 0.7) 88.49

(1, 1) (1, 0.5) 94.56

(1, 1) (1, 0.3) 95.73

(1, 1) (1, 0.1) 95.65

(1, 1) (1, 0) 95.07

TABLE 3 The impact of auxiliary classifier B on wafer classification 
accuracy.

(A, B) (C, D) Precision (%)

(1, 1.2) (1, 0.3) 95.95

(1, 1.4) (1, 0.3) 96.71

(1, 1.6) (1, 0.3) 96.53

(1, 1.8) (1, 0.3) 95.45
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TABLE 4 Comparison to other methods tested in the WM-811K dataset.

Model Accuracy (%)

Ours 96.71

CNN-WDI (Saqlain et al., 2020) 96.20

SVE (Saqlain et al., 2019) 95.86

YOLOV4 (Shinde et al., 2022) 95.70

WMFPR (Wu et al., 2015) 94.63

YOLOV3 (Shinde et al., 2022) 94.40

CVAE (Ho et al., 2021) 93.60

SCSDAE (Yu et al., 2019) 92.63

Label reconstruction (Park and Jang, 2021) 91.20

DTE-FPR (Piao et al., 2018) 90.50

TABLE 5 Comparison to other models tested in the WM-811K dataset.

Model Accuracy (%)

Ours 96.71

ResNet50 (He et al., 2015) 95.23

VGG16 (Karen and Andrew, 2015) 95.20

MobileNet (Andrew et al., 2017) 93.20

GoogleNet (Christian et al., 2015) 93.82

ResNet34 (He et al., 2015) 92.64

ResNet101 (He et al., 2015) 91.04

3.3.2. Metrics
The methods shown in Table 4 are the results of a test run on the 

WM-811K dataset. As shown in Table 4, the proposed method is the 
best in terms of performance. The proposed method is not only simple 
to process but can also achieve good results.

We used the same settings as the proposed model to test some 
common classified networks. As shown in Table 5, our model is 1.48% 
higher than that ranked second place, ResNet50.

We also used the True Positive Rate (TPR) and True Negative Rate 
(TNR) as metrics to measure the performance of the model. TPR is 
the proportion of positive examples predicted by the model to all real 
positive examples. TNR is the proportion of negative examples 
predicted by the model to all real negative examples. TPR and TNR 
are calculated by Equations (5, 6), respectively.

  
TPR TP

TP FN
�

�  
(5)

  
TNR TN

TN FP
�

�  
(6)

TP is the number of positive examples correctly classified by 
the model.

FN is the number of positive examples incorrectly classified by 
the model.

FP is the number of negative examples incorrectly classified by 
the model.

TN is the number of negative examples correctly classified by 
the model.

As shown in Table 6, model performance in WM-811K, for other 
types except for Near-full, the recognition precision is above 88%. For 
Random and Edge-Ring, the precision is more than 99%. The reason 
for the low recognition accuracy of Near-full will be discussed in the 
error analysis. The specificity for all kinds of wafers exceeds 99%.

We also tested the proposed model in wafer-Kaggle, as shown in 
Table 7, the recognition accuracy of each type of wafer was more than 
87%. The recall was more than 87% and the specificity exceeded 98%. 
The precision of Near-full was 100%.

The confusion matrix of the WM-811K and wafer-Kaggle dataset 
are shown in Figure 10.

FIGURE 9

The wafer maps in WM-811K contains serious noise.
TABLE 6 The performance of the proposed model in WM-811K.

Defect type Precision (%) TPR (%) TNR (%)

Loc 95.3 89.4 99.3

Center 96.8 99.5 99.3

Donut 88.5 96.7 99.7

Random 100.0 88.5 100.0

Scratch 95.6 90.0 99.8

Near-full 75.0 100.0 99.8

Edge-loc 94.8 97.5 98.6

Edge-Ring 99.1 99.3 99.4

TABLE 7 The performance of the proposed model in wafer-Kaggle.

Defect type Precision (%) Recall (%) Specificity (%)

Loc 88.5 85.8 98.8

Center 97.2 99.7 99.3

Donut 93.0 97.6 99.8

Scratch 87.5 98.0 99.6

Near-full 100.0 100.0 100.0

Edge-loc 93.0 87.2 98.9

Edge-Ring 99.1 99.4 99.1
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3.3.3. Visualization
To further investigate the performance of the proposed model in 

more detail, we  use gradient weighted class activation mapping 
(Grad-CAM) (Du and Martinez, 2011) to visualize it. As shown in 
Figure 11, when the area  more brightly colored, the model  pays 
more attention to it. For different types of wafer defects, the proposed 
model can capture their unique features accurately and not be affected 
by noise.

Figure  12 shows wafer images with Random defects in the 
WM-811K dataset where MFFP-Net failed to predict the correct 
defect categories. Although MFFP-Net is robust to wafer maps with 
noise, great similarity between Random and Near-full leads to 
recognition errors. The solution to the problem is to supplement more 
information about these two defect types, such as using multiple data 
enhancement methods to increase differences.

4. Conclusion and discussion

This paper proposes a Multi-Feature Fusion Perceptual Network 
(MFFP-Net) inspired by the attributes of the wafers and human 

visual perception mechanism to recognize wafer defects. 
We  designed a multi-feature fusion module through which 
information can be processed at various scales and then aggregated 
so that the next stage can abstract features from the different scales 
simultaneously. The final experiment and comparison with existing 
methods showed that the proposed method can effectively eliminate 
the influence of noise and achieve high precision recognition. DNA 

FIGURE 10

Confusion matrix of the WM-811K and wafer-Kaggle datatset. 
(A) Confusion matrix of the WM-811K. (B) Confusion matrix of the 
wafer-Kaggle datatset.

FIGURE 11

Attention maps of eight different wafers in WM-811K.

FIGURE 12

Error analysis. (A) Water images with random defect in the WM-811K 
dataset where MFFP-Net failed to predict the correct defect 
categories. (B) Comparison between near-full and random.
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computing is a novel intelligent method that can be  applied to 
remote sensing image classification (Jiao et al., 2010) and sodar data 
classification (Ray and Mondal, 2011). Due to DNA computing 
having the characteristics of massive parallel computing, in future 
work, we plan to explore using it to classify wafers and compared it 
with the method based on neural networks in performance.
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