4 research outputs found

    Mitochondrial dynamics in health and disease: mechanisms and potential targets

    No full text
    Abstract Mitochondria are organelles that are able to adjust and respond to different stressors and metabolic needs within a cell, showcasing their plasticity and dynamic nature. These abilities allow them to effectively coordinate various cellular functions. Mitochondrial dynamics refers to the changing process of fission, fusion, mitophagy and transport, which is crucial for optimal function in signal transduction and metabolism. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular fate, and a range of diseases, including neurodegenerative disorders, metabolic diseases, cardiovascular diseases and cancers. Herein, we review the mechanism of mitochondrial dynamics, and its impacts on cellular function. We also delve into the changes that occur in mitochondrial dynamics during health and disease, and offer novel perspectives on how to target the modulation of mitochondrial dynamics

    Two spectrophotometric methods for the determination of azithromycin and roxithromycin in pharmaceutical preparations

    No full text
    Two new and simple spectrophotometric procedures have been proposed and validated for estimation of two important macrolide antibiotics namely, azithromycin dihydrate and roxithromycin. Method I depends on complex formation between any of the two drugs and copper in acidic medium where the absorbances of the produced complexes are measured at 250 and 264 nm with linearity ranges of 1.0-100.0 and 2.0-130.0 µg/mL for the two drugs, respectively. Method II depends on the reaction of these drugs with N-bromosuccinimide forming a product which is yellow colored, measured at 264 and 278 nm, with linearity ranges of 2.0-140.0 and 3.0-160.0 µg/mL for azithromycin dihydrate and roxithromycin, respectively. The proposed methods were subjected to detailed validation procedure; moreover they were used for the estimation of the concerned drugs in their different dosage forms. Study of the reactions stoichiometry was carried out; furthermore, a reaction mechanism proposal was presented
    corecore