22 research outputs found

    The Dynamic Impacts of Employee Job Motivation on Employee Job Performance and Corporate Customer Satisfaction: The Contingent Role of ERP System Implementation

    Get PDF
    Prior research has generally found a significant, positive impact of employees\u27 job motivation on job performance, and which in turn, leads to more satisfied customers. However, little attention is directed towards how implementation of centralized information systems (IS), such as Enterprise Resource Planning (ERP) systems, will affect these relationships in the business to business (B2B) context. Toward this end, we plan to conduct a field study to empirically compare the effects of these relationships before and after the implementation of an ERP system. This cross-disciplinary study will contribute to the extant organization, marketing, and IS literature by examining how a centralized IS implementation moderates the relationships among employees’ job motivation, performance, and corporate customer satisfaction, and testing the proposed framework in the B2B context

    Comprehensive analysis of PSMD family members and validation of PSMD9 as a potential therapeutic target in human glioblastoma

    Get PDF
    Aims PSMD family members, as important components of the 26S proteasome, are well known to be involved in protein degradation. However, their role in glioblastoma (GBM) has not been rigorously investigated. We aimed to perform systematic analysis of the expression signature, prognostic significance and functions of PSMD family genes in GBM to reveal potential prognostic markers and new therapeutic targets among PSMD family members. Methods In this study, we systemically analyzed PSMD family members in terms of their expression profiles, prognostic implications, DNA methylation levels, and genetic alterations; the relationships between their expression levels and immune infiltration and drug sensitivity; and their potential functional enrichment in GBM through bioinformatics assessment. Moreover, in vitro and in vivo experiments were used to validate the biological functions of PSMD9 and its targeted therapeutic effect in GBM. Results The mRNA levels of PSMD5/8/9/10/11/13/14 were higher in GBM than in normal brain tissues, and the mRNA levels of PSMD1/4/5/8/9/11/12 were higher in high-grade glioma (WHO grade III & IV) than in low-grade glioma (WHO grade II). High mRNA expression of PSMD2/6/8/9/12/13/14 and low mRNA expression of PSMD7 were associated with poor overall survival (OS). Multivariate Cox regression analysis identified PSMD2/5/6/8/9/10/11/12 as independent prognostic factors for OS prediction. In addition, the protein–protein interaction network and gene set enrichment analysis results suggested that PSMD family members and their interacting molecules were involved in the regulation of the cell cycle, cell invasion and migration, and other biological processes in GBM. In addition, knockdown of PSMD9 inhibited cell proliferation, invasion and migration and induced G2/M cell cycle arrest in LN229 and A172 GBM cells. Moreover, PSMD9 promoted the malignant progression of GBM in vivo. GBM cell lines with high PSMD9 expression were more resistant to panobinostat, a potent deacetylase inhibitor, than those with low PSMD9 expression. In vitro and in vivo experiments further validated that PSMD9 overexpression rescued the GBM inhibitory effect of panobinostat. Conclusion This study provides new insights into the value of the PSMD family in human GBM diagnosis and prognosis evaluation, and we further identified PSMD9 as a potential therapeutic target. These findings may lead to the development of effective therapeutic strategies for GBM.publishedVersio

    Ursodeoxycholic Acid Inhibits Glioblastoma Progression via Endoplasmic Reticulum Stress Related Apoptosis and Synergizes with the Proteasome Inhibitor Bortezomib

    Get PDF
    Ursodeoxycholic acid (UDCA) has demonstrated cancer suppressive potential in several tumors. Here, we investigated the antitumor potential and biochemical mechanism of UDCA on glioblastoma multiforme (GBM), the deadliest form of brain cancer with a median survival of 15 months. Cell viability was assessed using the CCK-8 and colony forming assays. Expression profiles were obtained using RNA sequencing, and PCR and Western blot were used to validate changes in related markers at the RNA and protein levels. Flow cytometry was used to examine cell cycle, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS). UDCA inhibited GBM cell viability in a dose- and time-dependent manner. Flow cytometry demonstrated that cells were arrested in the G1 phase and underwent apoptosis. The RNA sequencing results showed UDCA treatment in part targeted gene expression related to mitochondria and endoplasmic reticulum (ER). UDCA indeed led to decreased MMP, overproduction of ROS, and ER stress. Three critical ER stress sensors ATF6, IRE1α, and PERK were increased in the acute phase. Additionally, combining UDCA with the proteasome inhibitor bortezomib (BTZ) achieved a synergistic effect through enhancing the PERK/ATF4/CHOP pathway and protracting ER stress. UDCA inhibited GBM progression, and the combination with BTZ achieved a synergistic effect via protracted ER stress. Thus, UDCA, alone or with combination of BTZ, shows promise as a possible therapeutic agent for the treatment of GBM.acceptedVersio

    Mechanosensitive Piezo1 protein as a novel regulator in macrophages and macrophage-mediated inflammatory diseases

    Get PDF
    Macrophages are the most important innate immune cells in humans. They are almost ubiquitous in peripheral tissues with a large variety of different mechanical milieus. Therefore, it is not inconceivable that mechanical stimuli have effects on macrophages. Emerging as key molecular detectors of mechanical stress, the function of Piezo channels in macrophages is becoming attractive. In this review, we addressed the architecture, activation mechanisms, biological functions, and pharmacological regulation of the Piezo1 channel and review the research advancements in functions of Piezo1 channels in macrophages and macrophage-mediated inflammatory diseases as well as the potential mechanisms involved

    Targeting the splicing factor NONO inhibits GBM progression through GPX1 intron retention

    Get PDF
    Background: Splicing factors are essential for nascent pre-mRNA processing and critical in cancer progression, suggesting that proteins with splicing functions represent potential molecular targets for cancer therapy. Here, we investigate the role of splicing factors in glioblastoma multiforme (GBM) progression and the possibility of targeting them for the treatment of the disease. Methods: The TCGA and CGGA public databases were used to screen for differentially expressed mRNA splicing factors. Immunohistochemistry and qRT-PCR were used to analyze the expression of non-POU domain-containing octamer-binding protein (NONO), a Drosophila behavior human splicing (DBHS) protein. Knockdown/overexpression of NONO with siRNA and lentiviral expression constructs was used to examine cell growth, apoptosis, and invasion in GBM cells. RNA sequencing was used to identify potential downstream molecular targets of NONO. RIP-PCR and RNA pulldown were used to determine the interaction between NONO and pre-mRNA. JC-1 staining and the seahorse assay were performed to assess redox homeostasis. Results: Expression of NONO was increased in GBM samples and associated with poor survival in patients (P = 0.04). Knockdown of NONO suppressed GBM growth, and overexpression of NONO promoted GBM tumorigenesis in vitro and in vivo. RNA sequencing-based transcriptomic profiling confirmed that knockdown of NONO in U251 and P3 cells resulted in global intron retention of pre-mRNA and led to abnormal splicing of specific pre-mRNAs for GPX1 and CCN1. NONO bound to a consensus motif in the intron of GPX1 pre-mRNA in association with another DBHS protein family member, PSPC1. Knockdown of NONO impaired tumor growth, invasion, and redox homeostasis through aberrant splicing of GPX1. Finally, Auranofin, a small molecule inhibitor of NONO, suppressed GBM tumor growth in an orthotopic xenograft model in mice. Conclusions: We demonstrated that intron retention was a critical alternative RNA splicing event to occur in GBM progression, and that NONO was a key regulator of mRNA splicing in GBM. Targeting NONO represents a novel, potential therapeutic strategy for GBM treatment.publishedVersio

    Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma

    Get PDF
    Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24‐hydroxylase (CYP46A1), a brain‐specific enzyme responsible for the elimination of cholesterol through the conversion of cholesterol into 24(S)‐hydroxycholesterol (24OHC), as one of the most dramatically dysregulated cholesterol metabolism genes in GBM. CYP46A1 was significantly decreased in GBM samples compared with normal brain tissue. A reduction in CYP46A1 expression was associated with increasing tumour grade and poor prognosis in human gliomas. Ectopic expression of CYP46A1 suppressed cell proliferation and in vivo tumour growth by increasing 24OHC levels. RNA‐seq revealed that treatment of GBM cells with 24OHC suppressed tumour growth through regulation of LXR and SREBP signalling. Efavirenz, an activator of CYP46A1 that is known to penetrate the blood–brain barrier, inhibited GBM growth in vivo. Our findings demonstrate that CYP46A1 is a critical regulator of cellular cholesterol in GBM and that the CYP46A1/24OHC axis is a potential therapeutic target.publishedVersio

    Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma cell lines

    Get PDF
    Dysregulated iron metabolism is a hallmark of many cancers, including glioblastoma (GBM). However, its role in tumor progression remains unclear. Herein, we identified coatomer protein complex subunit zeta 1 (COPZ1) as a therapeutic target candidate which significantly dysregulated iron metabolism in GBM cells. Overexpression of COPZ1 was associated with increasing tumor grade and poor prognosis in glioma patients based on analysis of expression data from the publicly available database The Cancer Genome Atlas (P < 0.001). Protein levels of COPZ1 were significantly increased in GBM compared to non-neoplastic brain tissue samples in immunohistochemistry and western blot analysis. SiRNA knockdown of COPZ1 suppressed proliferation of U87MG, U251 and P3#GBM in vitro. Stable expression of a COPZ1 shRNA construct in U87MG inhibited tumor growth in vivo by ~60% relative to controls at day 21 after implantation (P < 0.001). Kaplan–Meier analysis of the survival data demonstrated that the overall survival of tumor bearing animals increased from 20.8 days (control) to 27.8 days (knockdown, P < 0.05). COPZ1 knockdown also led to the increase in nuclear receptor coactivator 4 (NCOA4), resulting in the degradation of ferritin, and a subsequent increase in the intracellular levels of ferrous iron and ultimately ferroptosis. These data demonstrate that COPZ1 is a critical mediator in iron metabolism. The COPZ1/NCOA4/FTH1 axis is therefore a novel therapeutic target for the treatment of human GBM.publishedVersio

    Gradient differences of immunotherapy efficacy in metastatic melanoma related to sunlight exposure pattern: A population-based study

    Get PDF
    BackgroundImmune checkpoint inhibitors (ICIs) have revolutionized metastatic melanoma (MM) treatment in just a few years. Ultraviolet (UV) in sunlight is the most significant environmental cause of melanoma, which is considered to be the main reason for tumor mutation burden (TMB) increase in melanoma. High TMB usually predicts that PD-1 inhibitors are effective. The sunlight exposure pattern of MM might be a clinical feature that matches TMB. The relationship between sunlight exposure patterns and immunotherapy response in MM is unclear. This study aims to investigate the correlation between sunlight exposure patterns and immunotherapy response in MM and establish nomograms that predict 3- and 5-year overall survival (OS) rate.MethodsWe searched the Surveillance, Epidemiology, and End Results (SEER) database and enrolled MM cases from 2005-2016. According to the advent of ICIs in 2011, the era was divided into the non-ICIs era (2005-2010) and the ICIs era (2011-2016). Patients were divided into three cohorts according to the primary site sunlight exposure patterns: head and neck in the first cohort, trunk arms and legs in the second cohort, and acral sites in the third cohort. We compared survival differences for each cohort between the two eras, performed stratified analysis, established nomograms for predicting 3- and 5-year OS rate, and performed internal validation.ResultsComparing the survival difference between the ICIs and non-ICIs era, head and neck melanoma showed the greatest improvement in survival, with 3- and 5-year OS rate increasing by 10.2% and 9.1%, respectively (P=0.00011). In trunk arms and legs melanoma, the 3- and 5-year OS rate increased by 4.6% and 3.9%, respectively (P&lt;0.0001). There is no improvement in survival in acral melanoma (AM) between the two eras (P=0.78). The receiver operating characteristic (ROC) curve, area under the ROC curve (AUC) and calibration graphs show good discrimination and accuracy of nomograms. Decision curve analysis (DCA) suggests good clinical utility of nomograms.ConclusionsBased on the classification of sunlight exposure patterns, there is a gradient difference in immunotherapy efficacy for MM. The degree of sunlight exposure is positively correlated with immunotherapy response. The nomograms are sufficiently accurate to predict 3- and 5-year OS rate for MM, allowing for individualized clinical decisions for future clinical work

    A New Coupled Awareness-Epidemic Spreading Model with Neighbor Behavior on Multiplex Networks

    No full text
    In this paper, we propose a nonlinear coupled model to study the two interacting processes of awareness diffusion and epidemic spreading on the same individual who is affected by different neighbor behavior status on multiplex networks. We achieve this topology scenario by two kinds of factors, one is the perception factor that can change interplay between different layers of networks and the other is the neighbors’ behavior status that can change the infection rate in each layer. According to the microscopic Markov chain approach (MMCA), we analyze the dynamical evolution of the system and derive the theoretical epidemic threshold on uncorrelated heterogeneous networks, and then, we validate the analysis by numerical simulation and discuss the final size of awareness diffusion and epidemic spreading on a scale-free network. With the outbreak of COVID-19, the spread of epidemic in China prompted drastic measures for transmission containment. We examine the effects of these interventions based on modeling of the awareness-epidemic and the COVID-19 epidemic case. The results further demonstrate that the epidemic spreading can be affected by the effective transmission rate of the awareness and neighbors’ behavior status

    Ursodeoxycholic Acid Inhibits Glioblastoma Progression via Endoplasmic Reticulum Stress Related Apoptosis and Synergizes with the Proteasome Inhibitor Bortezomib

    No full text
    Ursodeoxycholic acid (UDCA) has demonstrated cancer suppressive potential in several tumors. Here, we investigated the antitumor potential and biochemical mechanism of UDCA on glioblastoma multiforme (GBM), the deadliest form of brain cancer with a median survival of 15 months. Cell viability was assessed using the CCK-8 and colony forming assays. Expression profiles were obtained using RNA sequencing, and PCR and Western blot were used to validate changes in related markers at the RNA and protein levels. Flow cytometry was used to examine cell cycle, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS). UDCA inhibited GBM cell viability in a dose- and time-dependent manner. Flow cytometry demonstrated that cells were arrested in the G1 phase and underwent apoptosis. The RNA sequencing results showed UDCA treatment in part targeted gene expression related to mitochondria and endoplasmic reticulum (ER). UDCA indeed led to decreased MMP, overproduction of ROS, and ER stress. Three critical ER stress sensors ATF6, IRE1α, and PERK were increased in the acute phase. Additionally, combining UDCA with the proteasome inhibitor bortezomib (BTZ) achieved a synergistic effect through enhancing the PERK/ATF4/CHOP pathway and protracting ER stress. UDCA inhibited GBM progression, and the combination with BTZ achieved a synergistic effect via protracted ER stress. Thus, UDCA, alone or with combination of BTZ, shows promise as a possible therapeutic agent for the treatment of GBM
    corecore