11 research outputs found
Inflammasome Activation Induces Pyroptosis in the Retina Exposed to Ocular Hypertension Injury
Mechanical stress and hypoxia during episodes of ocular hypertension (OHT) trigger glial activation and neuroinflammation in the retina. Glial activation and release of pro-inflammatory cytokines TNFα and IL-1β, complement, and other danger factors was shown to facilitate injury and loss of retinal ganglion cells (RGCs) that send visual information to the brain. However, cellular events linking neuroinflammation and neurotoxicity remain poorly characterized. Several pro-inflammatory and danger signaling pathways, including P2X7 receptors and Pannexin1 (Panx1) channels, are known to activate inflammasome caspases that proteolytically activate gasdermin D channel-formation to export IL-1 cytokines and/or induce pyroptosis. In this work, we used molecular and genetic approaches to map and characterize inflammasome complexes and detect pyroptosis in the OHT-injured retina. Acute activation of distinct inflammasome complexes containing NLRP1, NLRP3 and Aim2 sensor proteins was detected in RGCs, retinal astrocytes and Muller glia of the OHT-challenged retina. Inflammasome-mediated activation of caspases-1 and release of mature IL-1β were detected within 6 h and peaked at 12–24 h after OHT injury. These coincided with the induction of pyroptotic pore protein gasdermin D in neurons and glia in the ganglion cell layer (GCL) and inner nuclear layer (INL). The OHT-induced release of cytokines and RGC death were significantly decreased in the retinas of Casp1−/−Casp4(11)del, Panx1−/− and in Wild-type (WT) mice treated with the Panx1 inhibitor probenecid. Our results showed a complex spatio-temporal pattern of innate immune responses in the retina. Furthermore, they indicate an active contribution of neuronal NLRP1/NLRP3 inflammasomes and the pro-pyroptotic gasdermin D pathway to pathophysiology of the OHT injury. These results support the feasibility of inflammasome modulation for neuroprotection in OHT-injured retinas
Evidence of novel finescale structural variation at autism spectrum disorder candidate loci
Background: Autism spectrum disorders (ASD) represent a group of neurodevelopmental disorders characterized by a core set of social-communicative and behavioral impairments. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, acting primarily via the GABA receptors (GABR). Multiple lines of evidence, including altered GABA and GABA receptor expression in autistic patients, indicate that the GABAergic system may be involved in the etiology of autism.
Methods: As copy number variations (CNVs), particularly rare and de novo CNVs, have now been implicated in ASD risk, we examined the GABA receptors and genes in related pathways for structural variation that may be associated with autism. We further extended our candidate gene set to include 19 genes and regions that had either been directly implicated in the autism literature or were directly related (via function or ancestry) to these primary candidates. For the high resolution CNV screen we employed custom-designed 244 k comparative genomic hybridization (CGH) arrays. Collectively, our probes spanned a total of 11 Mb of GABA-related and additional candidate regions with a density of approximately one probe every 200 nucleotides, allowing a theoretical resolution for detection of CNVs of approximately 1 kb or greater on average. One hundred and sixty-eight autism cases and 149 control individuals were screened for structural variants. Prioritized CNV events were confirmed using quantitative PCR, and confirmed loci were evaluated on an additional set of 170 cases and 170 control individuals that were not included in the original discovery set. Loci that remained interesting were subsequently screened via quantitative PCR on an additional set of 755 cases and 1,809 unaffected family members.
Results: Results include rare deletions in autistic individuals at JAKMIP1, NRXN1, Neuroligin4Y, OXTR, and ABAT. Common insertion/deletion polymorphisms were detected at several loci, including GABBR2 and NRXN3. Overall, statistically significant enrichment in affected vs. unaffected individuals was observed for NRXN1 deletions.
Conclusions: These results provide additional support for the role of rare structural variation in ASD
Characterization of twenty-five ovarian tumour cell lines that phenocopy primary tumours
Currently available human tumour cell line panels consist of a small number of lines in each lineage that generally fail to retain the phenotype of the original patient tumour. Here we develop a cell culture medium that enables us to routinely establish cell lines from diverse subtypes of human ovarian cancers with >95% efficiency. Importantly, the 25 new ovarian tumour cell lines described here retain the genomic landscape, histopathology and molecular features of the original tumours. Furthermore, the molecular profile and drug response of these cell lines correlate with distinct groups of primary tumours with different outcomes. Thus, tumour cell lines derived using this methodology represent a significantly improved platform to study human tumour pathophysiology and response to therapy
Par-complex aPKC and Par3 cross-talk with innate immunity NF-Â B pathway in epithelial cells
Components of the Par-complex, atypical PKC and Par3, have been found to be downregulated upon activation of NF-κB in intestinal epithelial cells. To determine their possible role in pro-inflammatory responses we transduced Caco-2 human colon carcinoma cells with constitutively active (ca) PKCι or anti-Par3 shRNA-expressing lentiviral particles. Contrary to previous reports in other cell types, ca-PKCι did not activate, but rather decreased, baseline NF-κB activity in a luminiscence reporter assay. An identical observation applied to a PB1 domain deletion PKCι, which fails to localize to the tight-junction. Conversely, as expected, the same ca-PKCι activated NF-κB in non-polarized HEK293 cells. Likewise, knockdown of Par3 increased NF-κB activity and, surprisingly, greatly enhanced its response to TNFα, as shown by transcription of IL-8, GRO-1, GRO-2 and GRO-3. We conclude that aPKC and Par3 are inhibitors of the canonical NF-κB activation pathway, although perhaps acting through independent pathways, and may be involved in pro-inflammatory responses
Par-complex aPKC and Par3 cross-talk with innate immunity NF-κB pathway in epithelial cells
Summary
Components of the Par-complex, atypical PKC and Par3, have been found to be downregulated upon activation of NF-κB in intestinal epithelial cells. To determine their possible role in pro-inflammatory responses we transduced Caco-2 human colon carcinoma cells with constitutively active (ca) PKCι or anti-Par3 shRNA-expressing lentiviral particles. Contrary to previous reports in other cell types, ca-PKCι did not activate, but rather decreased, baseline NF-κB activity in a luminiscence reporter assay. An identical observation applied to a PB1 domain deletion PKCι, which fails to localize to the tight-junction. Conversely, as expected, the same ca-PKCι activated NF-κB in non-polarized HEK293 cells. Likewise, knockdown of Par3 increased NF-κB activity and, surprisingly, greatly enhanced its response to TNFα, as shown by transcription of IL-8, GRO-1, GRO-2 and GRO-3. We conclude that aPKC and Par3 are inhibitors of the canonical NF-κB activation pathway, although perhaps acting through independent pathways, and may be involved in pro-inflammatory responses
Additional file 1: Figure S1. of Coral cell separation and isolation by fluorescence-activated cell sorting (FACS)
Comparison of coral cell dissociation. P. damicornis cell suspension was collected either mechanically using a fine blade as described in the methods (A) or also incubated at room temperature with Trypsin 0.025% of Trypsin-EDTA in 3.3XPBS (B). Cell suspension was labeled with DAPI, CellRox, and LysoTracker Deep Red, and analyzed using SH800S Cell Sorter. Among the cells isolated without Trypsin (A) about 8% were positive to DAPI whereas 31% were positive to DAPI isolated with Trypsin (B), in the rectangular gate. This DAPI stain results corroborates our observation with Trypan Blue by light microscopy (data not shown). Figure S2. Symbiodinium positive population validation. In addition to the sorted cells microscopy, to validate that the population observed on the far red and green channels without labeling is Symbiodinium we used wild type (WT) Aiptasia that contains Symbiodinium and stable strains that stably grow for more than a decade without any symbiotic algae (APO). It can be observed that the gate of Symbiodinium positive cells is almost empty of cells (Right panel; 0.17%) in the APO strain while there are about 15% of cells in the gate of the wild type strain. Figure S3. Green fluorescent beads control for phagocytosis assays. To validate that the green fluorescent beads positive cells are the gated populations (Figs. 2, 5, 6) we ran the beads alone. Due to the size of the beads (1 μm) most of them that are not conjugated to cells are gated out on the size and granularity gate (FSC, SSC). Only 8 out of 10,000 events are positive in the gate. (DOCX 577 kb
Recommended from our members
Inflammasome facilitates ganglion cell loss via pyroptosis and apoptosis in ocular hypertension injury
Characterization of twenty-five ovarian tumour cell lines that phenocopy primary tumours
Currently available human tumour cell line panels consist of a small number of lines in each lineage that generally fail to retain the phenotype of the original patient tumour. Here we develop a cell culture medium that enables us to routinely establish cell lines from diverse subtypes of human ovarian cancers with >95% efficiency. Importantly, the 25 new ovarian tumour cell lines described here retain the genomic landscape, histopathology and molecular features of the original tumours. Furthermore, the molecular profile and drug response of these cell lines correlate with distinct groups of primary tumours with different outcomes. Thus, tumour cell lines derived using this methodology represent a significantly improved platform to study human tumour pathophysiology and response to therapy
Coral cell separation and isolation by fluorescence-activated cell sorting (FACS)
Abstract Background Generalized methods for understanding the cell biology of non-model species are quite rare, yet very much needed. In order to address this issue, we have modified a technique traditionally used in the biomedical field for ecological and evolutionary research. Fluorescent activated cell sorting (FACS) is often used for sorting and identifying cell populations. In this study, we developed a method to identify and isolate different cell populations in corals and other cnidarians. Methods Using fluorescence-activated cell sorting (FACS), coral cell suspension were sorted into different cellular populations using fluorescent cell markers that are non-species specific. Over 30 different cell markers were tested. Additionally, cell suspension from Aiptasia pallida was also tested, and a phagocytosis test was done as a downstream functional assay. Results We found that 24 of the screened markers positively labeled coral cells and 16 differentiated cell sub-populations. We identified 12 different cellular sub-populations using three markers, and found that each sub-population is primarily homogeneous. Lastly, we verified this technique in a sea anemone, Aiptasia pallida, and found that with minor modifications, a similar gating strategy can be successfully applied. Additionally, within A. pallida, we show elevated phagocytosis of sorted cells based on an immune associated marker. Conclusions In this study, we successfully adapted FACS for isolating coral cell populations and conclude that this technique is translatable for future use in other species. This technique has the potential to be used for different types of studies on the cellular stress response and other immunological studies