82 research outputs found

    Molecular features of hepatitis E virus from farmed rabbits in Shandong province, China

    Get PDF
    [EN] This study was undertaken to investigate the genetic variability of hepatitis E virus (HEV) from farmed rabbits in Shandong province, China. A total of 50 fresh faecal samples from 5 rabbit farms were collected and subjected to reverse transcription and nested polymerase chain reaction (RT-nPCR) for a fragment sequence of HEV capsid gene. The results demonstrated that HEV RNA was observed in 6 faecal samples (6/50, 12.0%). In addition, the result of phylogenetic analysis showed that the 6 HEV isolates were classified into HEV-3 genotype with other rabbit HEV isolates from other countries, and shared 85.2-87.2%, 81.5-83.1%, and 77.0-78.6% nucleotide similarities with rabbit HEV isolates from Korea, the United States and France, respectively. To sum up, the HEV isolated in this study from farmed rabbits belongs to the HEV-3 genotype, and the zoonotic ability and pathogenesis of the rabbit HEV merit further study due to the fact that HEV-3 genotype has the potential to trigger zoonotic infections.This study was supported by the Intramural Fund of Hebei University of Economics and Business in 2018 (2018PY17) and the Development Plan of Science and Technology of Tai’an, China (2016NS1051)Zhang, H.; Zhou, Y.; Liu, J. (2018). Molecular features of hepatitis E virus from farmed rabbits in Shandong province, China. World Rabbit Science. 26(4):307-312. https://doi.org/10.4995/wrs.2018.10225SWORD307312264Ahn H.S., Park B.J., Han S.H., Kim Y.H., Kim D.H., Kim B.S., Lee J.B., Park S.Y., Song C.S., Lee S.W., Choi I.S. 2017. Prevalence and genetic features of rabbit hepatitis E virus in Korea. J. Med. Virol., 89: 1995-2002. https://doi.org/10.1002/jmv.24875Burt S.A., Veltman J., Hakze-van der Honing R., Schmitt H., Poel W.H. 2016. Hepatitis E Virus in Farmed Rabbits, Wild Rabbits and Petting Farm Rabbits in the Netherlands. Food Environ. Virol., 84: 313. https://doi.org/10.1007/s12560-016-9257-1Cossaboom C.M., Córdoba L., Dryman B.A., Meng X.J. 2011. Hepatitis E virus in rabbits, Virginia, USA. Emerg. Infect. Dis., 17: 2047-2049. https://doi.org/10.3201/eid1711.110428Cossaboom C.M., Córdoba L., Cao D., Ni Y.Y., Meng X.J. 2012. Complete genome sequence of hepatitis E virus from rabbits in the United States. J. Virol., 86: 13124-13125. https://doi.org/10.1128/JVI.02414-12Di Bartolo I., De Sabato L., Marata A., Martinelli N., Magistrali C., Monini M., Ponterio E., Ostanello F., Ruggeri F. 2016. Serological survey of hepatitis E virus infection in farmed and pet rabbits in Italy. Arch. Virol., 161: 1343-1346. https://doi.org/10.1007/s00705-016-2778-yEiden M., Vina-Rodriguez A., Schlosser J., Schirrmeier H., Groschup M.H. 2016. Detection of Hepatitis E Virus in Archived Rabbit Serum Samples, Germany 1989. Food Environ. Virol., 8: 105-107. https://doi.org/10.1007/s12560-015-9222-4Emerson S.U., Purcell R.H. 2003. Hepatitis E virus. Rev. Med.Virol., 13: 145-154. https://doi.org/10.1002/rmv.384Frias M., López-López P., Rivero A., Rivero-Juarez A. 2018. Role of Hepatitis E Virus Infection in Acute-on-Chronic Liver Failure. Biomed. Res. Int., 9098535. https://doi.org/10.1155/2018/9098535Fujiwara S., Yokokawa Y., Morino K., Hayasaka K., Kawabata M., Shimizu T. 2014. Chronic hepatitis E: a review of the literature. J. Viral Hepat., 21: 78-89. https://doi.org/10.1111/jvh.12156Geng J., Wang L., Wang X., Fu H., Bu Q, Liu P., Zhu Y., Wang M., Sui Y., Zhuang H. 2011. Potential risk of zoonotic transmission from young swine to human: seroepidemiological and genetic characterization of hepatitis E virus in human and various animals in Beijing, China. J. Viral Hept., 18: 583-590. https://doi.org/10.1111/j.1365-2893.2011.01472.xHuang F., Li Y., Yu W., Jing S., Wang J., Long F., He Z., Yang C., Bi Y., Cao W., Liu C., Hua X., Pan Q. 2016. Excretion of infectious hepatitis E virus into milk in cows imposes high risks of zoonosis. Hepatology, 64: 350-359. https://doi.org/10.1002/hep.28668Izopet J., Dubois M., Bertagnoli S., Lhomme S., Marchandeau S., Boucher S., Kamar N., Abravanel F., Guérin J.L. 2012. Hepatitis E virus strains in rabbits and evidence of a closely related strain in humans, France. Emerg. Infect. Dis., 18: 1274-1281. https://doi.org/10.3201/eid1808.120057Jirintai S., Manglai D., Takahashi M., Nagashima S., Kobayashi T., Nishizawa T., Okamoto H. 2012. Molecular analysis of hepatitis E virus from farm rabbits in Inner Mongolia, China and its successful propagation in A549 and PLC/PRF/5 cells. Virus Res., 170: 126-137. https://doi.org/10.1016/j.virusres.2012.09.015Johne R., Dremsek P., Reetz J., Heckel G., Hess M., Ulrich R.G. 2014. Hepeviridae: an expanding family of vertebrate viruses. Infect. Genet. Evol., 27: 212-229. https://doi.org/10.1016/j.meegid.2014.06.024Kaiser M., Delaune D., Chazouillères O., Blümel J., Roque-Afonso A.M., Baylis S.A. 2018. A World Health Organization Human Hepatitis E Virus Reference Strain Related to Similar Strains Isolated from Rabbits. Genome Announc., 6: e00292-18. https://doi.org/10.1128/genomeA.00292-18Kamar N., Selves J., Mansuy J.M., Ouezzani L., Peron J.M., Guitard J., Cointault O., Esposito L., Abravanel F., Danjoux M., Durand D., Vinel J.P., Izopet J., Rostaing L. 2008. Hepatitis E virus and chronic hepatitis in organtransplant recipients. N. Engl. J. Med., 358: 811-817. https://doi.org/10.1056/NEJMoa0706992King N.J., Hewitt J., Perchec-Merien A.M. Hiding in Plain Sight? It's Time to Investigate Other Possible Transmission Routes for Hepatitis E Virus (HEV) in Developed Countries. Food Environ. Virol., 10: 225-252. https://doi.org/10.1007/s12560-018-9342-8Krzowska-Firych J.M., Lucas C., Lucas G., Tomasiewicz K. 2018. Hepatitis E-A new era in understanding. Ann. Agric. Environ. Med., 25: 250-254. https://doi.org/10.26444/aaem/75142Lee G.H., Tan B.H., Teo E.C., Lim S.G., Dan Y.Y., Wee A., Aw P.P., Zhu Y., Hibberd M.L., Tan C.K., Purdy M.A., Teo C.G. 2016. Chronic Infection With Camelid Hepatitis E Virus in a Liver Transplant Recipient Who Regularly Consumes Camel Meat and Milk. Gastroenterology, 150: 355-357. https://doi.org/10.1053/j.gastro.2015.10.048Lhomme S., Dubois M., Abravanel F., Top S., Bertagnoli S., Guerin J.L., Izopet J. Risk of zoonotic transmission of HEV from rabbits. J. Clin. Virol., 58: 357-362. https://doi.org/10.1016/j.jcv.2013.02.006Lhomme S., Top S., Bertagnoli S., Dubois M., Guerin J.-L., Izopet J. 2015. Wildlife reservoir for hepatitis E virus, Southwestern France. Emerg Infect. Dis., 21: 1224. https://doi.org/10.3201/eid2107.141909Li S., Liu M., Cong J., Zhou Y., Miao Z. 2017. Detection and characterization of Hepatitis E Virus in goats at slaughterhouse in Tai'an Region, China. Biomed. Res. Int., 3723650. https://doi.org/10.1155/2017/3723650Liu P., Bu Q.N., Wang L., Han J., Du R.J., Lei Y.X., Ouyang Y.Q., Li J., Zhu Y.H., Lu F.M. 2013. Transmission of hepatitis E virus from rabbits to cynomolgus macaques. Emerg. Infect. Dis., 19: 559-565. https://doi.org/10.3201/eid1904.120827Meng X.J. 2010a. Hepatitis E virus: animal reservoirs and zoonotic risk. Vet. Microbiol., 140: 256-265. https://doi.org/10.1016/j.vetmic.2009.03.017Meng X.J. 2010b. Novel strains of hepatitis E virus identified from humans and other animal species: is hepatitis E a zoonosis? J. Hepatol., 33: 842-845. https://doi.org/10.1016/S0168-8278(00)80319-0Meng X.J. 2011. From barnyard to food table: the omnipresence of hepatitis E virus and risk for zoonotic infection and food safety. Virus Res., 161: 23-30. https://doi.org/10.1016/j.virusres.2011.01.016Pavio N., Meng X.J., Doceul V. 2015. Zoonotic origin of hepatitis E. Curr. Opin. Virol., 10: 34-41. https://doi.org/10.1016/j.coviro.2014.12.006Pérez-Gracia M.T., Suay B., Mateos-Lindemann M.L. 2014. Hepatitis E: an emerging disease. Infect. Genet. Evol., 22: 40-59. https://doi.org/10.1016/j.meegid.2014.01.002Purcell R., Emerson S. 2008. Hepatitis E: an emerging awareness of an old disease. J. Hepatol., 48: 494-503. https://doi.org/10.1016/j.jhep.2007.12.008Purdy M.A., Khudyakov Y.E. 2010. Evolutionary history and population dynamics of hepatitis E virus. PLoS One, 5:e14376. https://doi.org/10.1371/journal.pone.0014376Ryll R., Eiden M., Heuser E., Weinhardt M., Ziege M., Höper D., Groschup M.H., Heckel G., Johne R., Ulrich R.G. 2018. Hepatitis E virus in feral rabbits along a rural-urban transect in Central Germany. Infect. Genet Evol., 61: 155-159. https://doi.org/10.1016/j.meegid.2018.03.019Shuai J.B., Li L.H., Li A.Y., He Y.Q., Zhang X.F. 2017. Full genome analysis of swine genotype 3 hepatitis E virus isolated from eastern China. J. Zhejiang Univ. Sci. B, 18: 549-554. https://doi.org/10.1631/jzus.B1600419Smith D.B., Simmonds P. 2014. International Committee on Taxonomy of Viruses Hepeviridae Study G., Jameel S., Emerson S.U., Harrison T.J., Meng X.J., Okamoto H., Van der Poel W.H., Purdy M.A. Consensus proposals for classification of the family Hepeviridae. J. Gen. Virol., 95: 2223-2232. https://doi.org/10.1099/vir.0.068429-0Sridhar S., Teng J.L.L., Chiu T.H., Lau S.K.P., Woo P.C.Y. 2017. Hepatitis E Virus Genotypes and Evolution: Emergence of Camel Hepatitis E Variants. Int. J. Mol. Sci., 18: E869. https://doi.org/10.3390/ijms18040869Syed S.F., Zhao Q., Umer M., Alagawany M., Ujjan I.A., Soomro F., Bangulzai N., Baloch A.H, Abd El-Hack M., Zhou E.M. 2018. Past, present and future of hepatitis E virus infection: Zoonotic perspectives. Microb. Pathog., 119: 103-108. https://doi.org/10.1016/j.micpath.2018.03.051Tei S., Kitajima N., Takahashi K., Mishiro S. 2003. Zoonotic transmission of hepatitis E virus from deer to human beings. Lancet, 362: 371-373. https://doi.org/10.1016/S0140-6736(03)14025-1Wang L., Gong W., Fu H., Li M., Zhang Y., Luo Z., Xu Q., Wang L. 2018. Hepatitis E virus detected from Chinese laboratory ferrets and farmed mink. Transbound Emerg. Dis., 65: 219-223. https://doi.org/10.1111/tbed.12720Woo P.C., Lau S.K., Teng J.L., Tsang A.K., Joseph M., Wong E.Y., Tang Y., Sivakumar S., Xie J., Bai R., Wernery R., Wernery U., Yuen K.Y. 2014. New hepatitis E virus genotype in camels, the Middle East. Emerg .Infect. Dis., 20: 1044-1048. https://doi.org/10.3201/eid2006.140140Xia J., Zeng H., Liu L., Zhang Y., Liu P., Geng J., Wang L., Wang L., Zhuang H. 2015. Swine and rabbits are the main reservoirs of hepatitis E virus in China: detection of HEV RNA in feces of farmed and wild animals. Arch. Virol., 160: 2791-2798. https://doi.org/10.1007/s00705-015-2574-0Yazaki Y., Mizuo H., Takahashi M., Nishizawa T., Sasaki N., Gotanda Y., Okamoto H. 2003. Sporadic acute or fulminant hepatitis E in Hokkaido, Japan, may be food-borne, as suggested by the presence of hepatitis E virus in pig liver as food. J. Gen. Virol., 84: 2351-2357. https://doi.org/10.1099/vir.0.19242-0Zhang X.X., Qin S.Y., Zhang Y., Meng Q.F., Jiang J., Yang G.L., Zhao Q., Zhu X.Q. 2015. First report of hepatitis E virus infection in sika deer in China. Biomed. Res. Int., 502846. https://doi.org/10.1155/2015/502846Zhao C., Ma Z., Harrison T.J., Feng R., Zhang C., Qiao Z., Fan J., Ma H., Li M., Song A., Wang Y. 2009. A novel genotype of hepatitis E virus prevalent among farmed rabbits in China. J. Med. Virol., 81: 1371-1379. https://doi.org/10.1002/jmv.21536Zheng Y., Ge S., Zhang J., Guo Q., Ng M.H., Wang F., Xia N., Jiang Q. 2006. Swine as a principal reservoir of hepatitis E virus that infects humans in eastern China. J. Infect. Dis., 193: 1643-1649. https://doi.org/10.1086/50429

    Research on Mud Flow Rate Measurement Method Based on Continuous Doppler Ultrasonic Wave

    Get PDF
    In deep-water drilling processes, the flow rate of drilling mud inside an annular pipe is significant judgment data for early kick detection. On the basis of the continuous-wave Doppler ultrasound, this paper proposes a new detection method of nonoriented continuous-wave Doppler ultrasound. The method solves the problem of the ultrasound having great attenuation in mud and not receiving effective signals by using a continuous ultrasound. Moreover, this method analyzes the nonoriented characteristics of ultrasound reflection on principle and proposes the detection of ultrasound Doppler frequency shift by detecting Lamb wave, which releases the detection of oil-based mud flow rate in a nonintrusive annular pipe. The feasibility of the method is verified through theoretical analysis and numerous experiments on a gas kick simulation platform. The measurement result has reached a flow accuracy approximating to the intrusive flow meter

    Active faulting of the Nanhe Fault and relation to the Anninghe Fault zone in the late Quaternary, eastern Tibetan Plateau

    Get PDF
    Faults along the boundaries of active tectonic blocks are the main structures that are responsible for major earthquakes in mainland China. Investigating the geometric distribution, rupture behavior, and paleoseismic history of these faults is the prerequisite for constraining geodynamic models and regional seismic hazard analyses. The Nanhe Fault, located at the eastern boundary of the Sichuan–Yunnan Block near Mianning County, has been paid less attention so far due to insufficient historical records of major earthquakes. In this paper, we focused on the Nanhe Fault and conducted satellite imagery interpretation, field investigations, and trench excavations. Our findings indicate that the Nanhe Fault initiates north of Mianning County; the north segment of the fault is connected with the Anninghe Fault; and it extends for about 70 km south-westward and terminates southwest of Ermaga Village. The fault has been faulting in the late Late Pleistocene with a left-lateral strike-slip rate of 2.40–2.56 mm/yr, while in the late Holocene, the left-lateral strike-slip and vertical slip rates are 2.50–2.60 mm/yr and about 0.60 mm/yr, respectively. Three paleoseismic events (5373–4525 BC, AD 1193–1576, and AD 1496–1843) were identified by excavating trenches at the Nanhe Fault. A comparative analysis of paleoseismic events between the Nanhe and the Anninghe fault indicates that both faults may have induced cascade rupture or triggered earthquakes—such related events may have occurred in 1496–1627. Additionally, by comparing the kinematic relationship of the faults at the eastern boundary of the Sichuan–Yunnan Block, we propose that the Nanhe Fault takes part in strain partitioning along the boundary. This interpretation reasonably explains the loss of the sliding rate between the Anninghe and Zemuhe faults, which also supports the GPS inversion results, and the discontinuous deformation model for the eastern margin of the Tibetan Plateau

    Texts of Kolima dialect of Yukaghir

    Get PDF
    <p>Clinical chemistry data of monkeys fed on diets containing GM rice or non-GM rice.</p

    3,5-Di(-O-acetyl)-3′,4′,7-tri[-O-(2-O-acetylethyl)]quercetin

    No full text
    A new quercetin derivative, 3,5-di(-O-acetyl)-3′,4′,7-tri[-O-(2-O-acetylethyl)]­quercetin, was synthesized. The structure of the target compound was characterized by IR, 1H NMR, 13C NMR and MS

    Scattering of a Gaussian Beam by a Conducting Spheroidal Particle With Non-Confocal Dielectric Coating

    No full text
    corecore