3,461 research outputs found
Atomic-level structural and chemical analysis of Cr-doped Bi2Se3 thin films
We present a study of the structure and chemical composition of the Cr-doped 3D topological insulator Bi2Se3. Single-crystalline thin films were grown by molecular beam epitaxy on Al2O3 (0001), and their structural and chemical properties determined on an atomic level by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A regular quintuple layer stacking of the Bi2Se3 film is found, with the exception of the first several atomic layers in the initial growth. The spectroscopy data gives direct evidence that Cr is preferentially substituting for Bi in the Bi2Se3 host. We also show that Cr has a tendency to segregate at internal grain boundaries of the Bi2Se3 film
Nel positively regulates the genesis of retinal ganglion cells by promoting their differentiation and survival during development
Peer reviewedPublisher PD
The electric wind of Venus: A global and persistent "polar wind"-like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions
Understanding what processes govern atmospheric escape and the loss of planetary water is of paramount importance for understanding how life in the universe can exist. One mechanism thought to be important at all planets is an βambipolarβ electric field that helps ions overcome gravity. We report the discovery and first quantitative extraterrestrial measurements of such a field at the planet Venus. Unexpectedly, despite comparable gravity, we show the field to be five times stronger than in Earth's similar ionosphere. Contrary to our understanding, Venus would still lose heavy ions (including oxygen and all water-group species) to space, even if there were no stripping by the solar wind. We therefore find that it is possible for planets to lose heavy ions to space entirely through electric forces in their ionospheres and such an βelectric windβ must be considered when studying the evolution and potential habitability of any planet in any star system
Enteric dysbiosis and fecal calprotectin expression in premature infants.
BackgroundPremature infants often develop enteric dysbiosis with a preponderance of Gammaproteobacteria, which has been related to adverse clinical outcomes. We investigated the relationship between increasing fecal Gammaproteobacteria and mucosal inflammation, measured by fecal calprotectin (FC).MethodsStool samples were collected from very-low-birth weight (VLBW) infants at β€2, 3, and 4 weeks' postnatal age. Fecal microbiome was surveyed using polymerase chain reaction amplification of the V4 region of 16S ribosomal RNA, and FC was measured by enzyme immunoassay.ResultsWe enrolled 45 VLBW infants (gestation 27.9βΒ±β2.2 weeks, birth weight 1126βΒ±β208βg) and obtained stool samples at 9.9βΒ±β3, 20.7βΒ±β4.1, and 29.4βΒ±β4.9 days. FC was positively correlated with the genus Klebsiella (rβ=β0.207, pβ=β0.034) and its dominant amplicon sequence variant (rβ=β0.290, pβ=β0.003), but not with the relative abundance of total Gammaproteobacteria. Klebsiella colonized the gut in two distinct patterns: some infants started with low Klebsiella abundance and gained these bacteria over time, whereas others began with very high Klebsiella abundance.ConclusionIn premature infants, FC correlated with relative abundance of a specific pathobiont, Klebsiella, and not with that of the class Gammaproteobacteria. These findings indicate a need to define dysbiosis at genera or higher levels of resolution
Evaluation of classical precipitation descriptions for Ξ³β²β²(Ni3NbβD022) in Ni-base superalloys
The growth/coarsening kinetics of Ξ³β²β²(Ni3NbβD022) precipitates have been found by numerous researchers to show an apparent correspondence with the classical (Ostwald ripening) equation outlined by Lifshitz, Slyozov and (separately) Wagner for a diffusion controlled regime. Nevertheless, a significant disparity between the actual precipitate size distribution shape and that predicted by LSW is frequently observed in the interpretation of these results, the origin of which is unclear. Analysis of the literature indicates one likely cause for this deviation from LSW for Ξ³β²β² precipitates is the βencounterβ phenomenon described by Davies et al. (Acta Metall 28(2):179β189, 1980) that is associated with secondary phases comprising a high volume fraction. Consequently, the distributions of both Ξ³β²β² precipitates described in the literature (Alloy 718) and measured in this research in Alloy 625 are analysed through employing the LifshitzβSlyozov-Encounter-Modified (LSEM) formulation (created by Davies et al.). The results of the LSEM analysis show good far better agreement than LSW with experimental distributions after the application of a necessary correction for what is termed in this research as βdirectional encounterβ. Moreover, the activation energy for Ξ³β²β² coarsening in Alloy 625 shows conformity with literature data once the effect of heterogeneous (on dislocations) precipitate nucleation at higher temperatures is accounted for
High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway
BACKGROUND: The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C(6)H(10)O(5) (l)+7 H(2)O (l)β12 H(2) (g)+6 CO(2) (g). The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. CONCLUSIONS: Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30Β°C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H(2)/glucose) of anaerobic fermentations. SIGNIFICANCE: The unique features, such as mild reaction conditions (30Β°C and atmospheric pressure), high hydrogen yields, likely low production costs ($βΌ2/kg H(2)), and a high energy-density carrier starch (14.8 H(2)-based mass%), provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy
Cancer cells exploit an orphan RNA to drive metastatic progression.
Here we performed a systematic search to identify breast-cancer-specific small noncoding RNAs, which we have collectively termed orphan noncoding RNAs (oncRNAs). We subsequently discovered that one of these oncRNAs, which originates from the 3' end of TERC, acts as a regulator of gene expression and is a robust promoter of breast cancer metastasis. This oncRNA, which we have named T3p, exerts its prometastatic effects by acting as an inhibitor of RISC complex activity and increasing the expression of the prometastatic genes NUPR1 and PANX2. Furthermore, we have shown that oncRNAs are present in cancer-cell-derived extracellular vesicles, raising the possibility that these circulating oncRNAs may also have a role in non-cell autonomous disease pathogenesis. Additionally, these circulating oncRNAs present a novel avenue for cancer fingerprinting using liquid biopsies
Serotonin and corticosterone rhythms in mice exposed to cigarette smoke and in patients with COPD:implication for COPD-associated neuropathogenesis
The circadian timing system controls daily rhythms of physiology and behavior, and disruption of clock function can trigger stressful life events. Daily exposure to cigarette smoke (CS) can lead to alteration in diverse biological and physiological processes. Smoking is associated with mood disorders, including depression and anxiety. Patients with chronic obstructive pulmonary disease (COPD) have abnormal circadian rhythms, reflected by daily changes in respiratory symptoms and lung function. Corticosterone (CORT) is an adrenal steroid that plays a considerable role in stress and anti-inflammatory responses. Serotonin (5-hydroxytryptamine; 5HT) is a neurohormone, which plays a role in sleep/wake regulation and affective disorders. Secretion of stress hormones (CORT and 5HT) is under the control of the circadian clock in the suprachiasmatic nucleus. Since smoking is a contributing factor in the development of COPD, we hypothesize that CS can affect circadian rhythms of CORT and 5HT secretion leading to sleep and mood disorders in smokers and patients with COPD. We measured the daily rhythms of plasma CORT and 5HT in mice following acute (3 d), sub-chronic (10 d) or chronic (6 mo) CS exposure and in plasma from non-smokers, smokers and patients with COPD. Acute and chronic CS exposure affected both the timing (peak phase) and amplitude of the daily rhythm of plasma CORT and 5HT in mice. Acute CS appeared to have subtle time-dependent effects on CORT levels but more pronounced effects on 5HT. As compared with CORT, plasma 5HT was slightly elevated in smokers but was reduced in patients with COPD. Thus, the effects of CS on plasma 5HT were consistent between mice and patients with COPD. Together, these data reveal a significant impact of CS exposure on rhythms of stress hormone secretion and subsequent detrimental effects on cognitive function, depression-like behavior, mood/anxiety and sleep quality in smokers and patients with COPD
Tetramethylpyrazine attenuates spinal cord ischemic injury due to aortic cross-clamping in rabbits
BACKGROUND: Lower limb paralysis occurs in 11% of patients after surgical procedure of thoracic or thoracoabdominal aneurysms and is an unpredictable and distressful complication. The aim of this study was to investigate the effects of tetramethylpyrazine (TMP), an intravenous drug made from traditional Chinese herbs, on the neurologic outcome and hisotpathology after transient spinal cord ischemia in rabbits. METHODS: Forty-five male New Zealand white rabbits were anesthetized with isoflurane and spinal cord ischemia was induced for 20 min by infrarenal aortic occlusion. Animals were randomly allocated to one of five groups (n = 8 each). Group C received no pharmacologic intervention. Group P received intravenous infusion of 30 mgΒ·kg(-1) TMP within 30 min before aortic occlusion. Group T(1), Group T(2) and Group T(3) received intravenous infusion of 15, 30 and 60 mgΒ·kg(-1) TMP respectively within 30 min after reperfusion. In the sham group (n = 5), the animals underwent the same procedures as the control group except infrarental aortic unocclusion. Neurologic status was scored by using the Tarlov criteria (in which 4 is normal and 0 is paraplegia) at 4 h, 8 h, 12 h, 24 h, and 48 h after reperfusion. All animals were sacrificed at 48 h after reperfusion and the spinal cords (L(5)) were removed immediately for histopathologic study. RESULTS: All animals in the control group became paraplegic. Neurologic status and histopathology (48 h) in the Groups P, T(2) and T(3) were significantly better than those in the control group (P < 0.05). There was a strong correlation between the final neurologic scores and the number of normal neurons in the anterior spinal cord (r = 0.776, P < 0.01). CONCLUSION: Tetramethylpyrazine significantly reduces neurologic injury related to spinal cord ischemia and reperfusion after aortic occlusion within a certain range of dose
Punica granatum (Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide
BACKGROUND: For β 24 years the AIDS pandemic has claimed β 30 million lives, causing β 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. METHODS: Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1) infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2) binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s) to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. RESULTS: HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. CONCLUSION: These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored
- β¦