556 research outputs found

    Synthesis of Mesoporous Silica@Co–Al Layered Double Hydroxide Spheres: Layer-by-Layer Method and Their Effects on the Flame Retardancy of Epoxy Resins

    Get PDF
    Hierarchical mesoporous silica@Co–Al layered double hydroxide (m-SiO2@Co–Al LDH) spheres were prepared through a layer-by-layer assembly process, in order to integrate their excellent physical and chemical functionalities. TEM results depicted that, due to the electrostatic potential difference between m-SiO2 and Co–Al LDH, the synthetic m-SiO2@Co–Al LDH hybrids exhibited that m-SiO2 spheres were packaged by the Co–Al LDH nanosheets. Subsequently, the m-SiO2@Co–Al LDH spheres were incorporated into epoxy resin (EP) to prepare specimens for investigation of their flame-retardant performance. Cone results indicated that m-SiO2@Co–Al LDH incorporated obviously improved fire retardant of EP. A plausible mechanism of fire retardant was hypothesized based on the analyses of thermal conductivity, char residues, and pyrolysis fragments. Labyrinth effect of m-SiO2 and formation of graphitized carbon char catalyzed by Co–Al LDH play pivotal roles in the flame retardance enhancement

    Does or did the supernova remnant Cassiopeia A operate as a PeVatron?

    Full text link
    For decades, supernova remnants (SNRs) have been considered the prime sources of Galactic Cosmic rays (CRs). But whether SNRs can accelerate CR protons to PeV energies and thus dominate CR flux up to the knee is currently under intensive theoretical and phenomenological debate. The direct test of the ability of SNRs to operate as CR PeVatrons can be provided by ultrahigh-energy (UHE; Eγ≥100E_\gamma \geq 100~TeV) γ\gamma-rays. In this context, the historical SNR Cassiopeia A (Cas A) is considered one of the most promising target for UHE observations. This paper presents the observation of Cas A and its vicinity by the LHAASO KM2A detector. The exceptional sensitivity of LHAASO KM2A in the UHE band, combined with the young age of Cas A, enabled us to derive stringent model-independent limits on the energy budget of UHE protons and nuclei accelerated by Cas A at any epoch after the explosion. The results challenge the prevailing paradigm that Cas A-type SNRs are major suppliers of PeV CRs in the Milky Way.Comment: 11 pages, 3 figures, Accepted by the APJ

    Measurement of ultra-high-energy diffuse gamma-ray emission of the Galactic plane from 10 TeV to 1 PeV with LHAASO-KM2A

    Full text link
    The diffuse Galactic γ\gamma-ray emission, mainly produced via interactions between cosmic rays and the interstellar medium and/or radiation field, is a very important probe of the distribution, propagation, and interaction of cosmic rays in the Milky Way. In this work we report the measurements of diffuse γ\gamma-rays from the Galactic plane between 10 TeV and 1 PeV energies, with the square kilometer array of the Large High Altitude Air Shower Observatory (LHAASO). Diffuse emissions from the inner (15∘<l<125∘15^{\circ}<l<125^{\circ}, ∣b∣<5∘|b|<5^{\circ}) and outer (125∘<l<235∘125^{\circ}<l<235^{\circ}, ∣b∣<5∘|b|<5^{\circ}) Galactic plane are detected with 29.1σ29.1\sigma and 12.7σ12.7\sigma significance, respectively. The outer Galactic plane diffuse emission is detected for the first time in the very- to ultra-high-energy domain (E>10E>10~TeV). The energy spectrum in the inner Galaxy regions can be described by a power-law function with an index of −2.99±0.04-2.99\pm0.04, which is different from the curved spectrum as expected from hadronic interactions between locally measured cosmic rays and the line-of-sight integrated gas content. Furthermore, the measured flux is higher by a factor of ∼3\sim3 than the prediction. A similar spectrum with an index of −2.99±0.07-2.99\pm0.07 is found in the outer Galaxy region, and the absolute flux for 10≲E≲6010\lesssim E\lesssim60 TeV is again higher than the prediction for hadronic cosmic ray interactions. The latitude distributions of the diffuse emission are consistent with the gas distribution, while the longitude distributions show clear deviation from the gas distribution. The LHAASO measurements imply that either additional emission sources exist or cosmic ray intensities have spatial variations.Comment: 12 pages, 8 figures, 5 tables; accepted for publication in Physical Review Letters; source mask file provided as ancillary fil

    Self-Assembly Fabrication of Hollow Mesoporous Silica@Co–Al Layered Double Hydroxide@Graphene and Application in Toxic Effluents Elimination

    Get PDF
    Here, we propose a self-assembly process to prepare hierarchical HM-SiO2@Co–Al LDH@graphene, with the purpose of combining their outstanding performance. Hollow mesoporous silica was first synthesized as the core, using a novel sonochemical method, followed by a controlled shell coating process and chemical reduction. As a result of the electrostatic potential difference among HM-SiO2, Co–Al LDH, and graphene oxide, the HM-SiO2 spheres were coated by Co–Al LDH and graphene. Subsequently, the HM-SiO2@Co–Al LDH@graphene spheres were introduced into an epoxy resin (EP) matrix for investigation of their toxic effluents capture and elimination effectiveness during combustion. The amount of toxic CO and volatile organic compounds from the epoxy resin decomposition significantly suppressed after incorporating the HM-SiO2@Co–Al LDH@graphene hybrids, implying a reduced toxicity

    Targeting tumor-associated macrophages by anti-tumor Chinese materia medica

    Get PDF
    Tumor-associated macrophages (TAMs) play a key role in all stages of tumorigenesis and tumor progression. TAMs secrete different kinds of cytokines, chemokines, and enzymes to affect the progression, metastasis, and resistance to therapy depending on their state of reprogramming. Therapeutic benefit in targeting TAMs suggests that macrophages are attractive targets for cancer treatment. Chinese materia medica (CMM) is an important approach for treating cancer in China and in the Asian region. According to the theory of Chinese medicine (CM) and its practice, some prescriptions of CM regulate the body's internal environment possibly including the remodeling the tumor microenvironment (TME). Here we briefly summarize the pivotal effects of TAMs in shaping the TME and promoting tumorigenesis, invasion, metastasis and immunosuppression. Furthermore, we illustrate the effects and mechanisms of CMM targeting TAMs in antitumor therapy. Finally, we reveal the CMM's dual-regulatory and multi-targeting functions on regulating TAMs, and hopefully, provide the theoretical basis for CMM clinical practice related to cancer therapy

    Virologic and clinical characteristics of HBV genotypes/subgenotypes in 487 Chinese pediatric patients with CHB

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association of hepatitis B virus (HBV) genotypes/subgenotypes with clinical characteristics is increasingly recognized. However, the virologic and clinical features of HBV genotypes/subgenotypes in pediatric patients remain largely unknown.</p> <p>Methods</p> <p>Four hundred and eighty-seven pediatric inpatients with CHB were investigated, including 217 nucleos(t)ide analog-experienced patients. HBV genotypes/subgenotypes and reverse transcriptase (RT) mutations were determined by direct sequencing. The stage of fibrosis and degree of inflammatory activity were evaluated by the Metavir score system.</p> <p>Results</p> <p>Among 487 enrolled pediatric patients, HBV genotype C2 and B2 were the most two prevalent (73.7% and 21.1%). Comparing with HBV/B2 infected patients, no significant difference was observed in the incidence rate and mutant patterns of lamivudine- or adefovir-resistant mutations in HBV/C2 infected patients (<it>P </it>> 0.05). Importantly, we found that the degree of hepatic inflammation degree, fibrosis stage and ALT level were significantly higher in HBV/C2-infected HBeAg positive patients than it was in HBV/B2-infected ones.</p> <p>Conclusions</p> <p>The pediatric patients with HBV/C2 infection might be more susceptible to develop severe liver pathogenesis.</p
    • …
    corecore