4,442 research outputs found

    Implementation of an On-Demand Routing Protocol for Wireless Sensor Networks

    Get PDF
    We present our experiences in implementing and validating the on-demand EYES Source Routing protocol (ESR) in a real wireless sensor network (WSN) environment. ESR has a fast recovery mechanism relying on MAC layer feedback to overcome frequent network topology changes resulting from node mobility and unreliability. A geographically restricted directional flooding scheme reduces energy consumption in the route re-establishment. ESR is implemented in our WSN environment consisting of EYES sensor node prototypes using the Lightweight Medium Access Control protocol (LMAC) on top of the AmbientRT operating system. We describe the key design and implementation features of our protocol and report experiment results of ESR and Ad hoc On-demand Distance Vector protocol (AODV), a conventional routing protocol for ad hoc networks

    Identification of a candidate gene for Rc-D1, a locus controlling red coleoptile colour in wheat

    Get PDF
    Red coleoptile is an easily observed agronomic trait of wheat and has been extensively studied. However, the molecular mechanism of this trait has not yet been revealed. In this study, the MYB gene TaMYB-D1 was isolated from the wheat cultivar ‘Gy115’, which possesses red coleoptiles. This gene resided at the short arm of the homoelogous group 7 chromosomes. TaMYB-D1 was the only gene expressed in the coleoptiles of ‘Gy115’ and was not expressed in ‘Opata’ and ‘CS’, which have uncoloured coleoptiles. Phylogenetic analysis placed TaMYB-D1 very close to ZmC1 and other MYB proteins regulating anthocyanin biosynthesis. The encoded protein of TaMYB-D1 had an integrated DNA binding domain of 102 amino acids and a transcription domain with 42 amino acids, similar to the structure of ZmC1. Transient expression analysis in onion epidermal cells showed that TaMYB-D1 was located at the plant nucleus, which suggested its role as a transcription factor. The expression of TaMYB-D1 was accompanied with the expression of TaDFR and anthocyanin biosynthesis in the development of the coleoptile of ‘Gy115’. Transient expression analysis showed that only TaMYB-D1 induced a few ‘Opata’ coleoptile cells to synthesize anthocyanin in light, and the gene also induced a colour change to red in many cells with the help of ZmR. All of these results suggested TaMYB-D1 as the candidate gene for the red coleoptile trait of ‘Gy115’

    Ammonium uptake and assimilation are required for rice defense against sheath blight disease

    Get PDF
    Nitrogen (N) is an important nutrient for plant growth and yield production, and rice grown in paddy soil mainly uses ammonium (NH4+) as its N source. Previous studies have shown that N status is tightly connected to plant defense; however, the roles of NH4+ uptake and assimilation in rice sheath blight disease response have not been studied previously. Here, we analyzed the effects of different N sources on plant defense against Rhizoctonia solani. The results indicated that rice plants grown in N-free conditions had higher resistance to sheath blight than those grown under N conditions. In greater detail, rice plants cultured with glutamine as the sole N source were more susceptible to sheath blight disease compared to the groups using NH4+ and nitrate (NO3–) as sole N sources. N deficiency severely inhibited plant growth; therefore, ammonium transporter 1;2 overexpressors (AMT1;2 OXs) were generated to test their growth and defense ability under low N conditions. AMT1;2 OXs increased N use efficiency and exhibited less susceptible symptoms to R. solani and highly induced the expression of PBZ1 compared to the wild-type controls upon infection of R. solani. Furthermore, the glutamine synthetase 1;1 (GS1;1) mutant (gs1;1) was more susceptible to R. solani infection than the wild-type control, and the genetic combination of AMT1;2 OX and gs1;1 revealed that AMT1;2 OX was less susceptible to R. solani and required GS1;1 activity. In addition, cellular NH4+ content was higher in AMT1;2 OX and gs1;1 plants, indicating that NH4+ was not directly controlling plant defense. In conclusion, the present study showed that the activation of NH4+ uptake and assimilation were required for rice resistance against sheath blight disease

    Preparation of polarization entangled mixed states of two photons

    Full text link
    We propose a scheme for preparing arbitrary two photons polarization entangled mixed states via controlled location decoherence. The scheme uses only linear optical devices and single-mode optical fibers, and may be feasible in experiment within current optical technology.Comment: 3 pages, 5 figs. The article has been rewritten. Discussion about experiment are added. To appear in Phys. Rev.

    Modelling solute transport in soil columns using advective-dispersive equations with fractional spatial derivatives

    Get PDF
    Solute transport in soils is commonly simulated with the advective–dispersive equation, or ADE. It has been reported that this model cannot take into account several important features of solute movement through soil. Recently, a new model has been suggested that results in a solute transport equation with fractional spatial derivatives, or FADE. We have assembled a database on published solute transport experiments in soil columns to test the new model. The FADE appears to be a useful generalization of the ADE. The order of the fractional differentiation reflects differences in physical conditions of the solute transport in soi

    Application of the Fisher-Rao metric to ellipse detection

    Get PDF
    The parameter space for the ellipses in a two dimensional image is a five dimensional manifold, where each point of the manifold corresponds to an ellipse in the image. The parameter space becomes a Riemannian manifold under a Fisher-Rao metric, which is derived from a Gaussian model for the blurring of ellipses in the image. Two points in the parameter space are close together under the Fisher-Rao metric if the corresponding ellipses are close together in the image. The Fisher-Rao metric is accurately approximated by a simpler metric under the assumption that the blurring is small compared with the sizes of the ellipses under consideration. It is shown that the parameter space for the ellipses in the image has a finite volume under the approximation to the Fisher-Rao metric. As a consequence the parameter space can be replaced, for the purpose of ellipse detection, by a finite set of points sampled from it. An efficient algorithm for sampling the parameter space is described. The algorithm uses the fact that the approximating metric is flat, and therefore locally Euclidean, on each three dimensional family of ellipses with a fixed orientation and a fixed eccentricity. Once the sample points have been obtained, ellipses are detected in a given image by checking each sample point in turn to see if the corresponding ellipse is supported by the nearby image pixel values. The resulting algorithm for ellipse detection is implemented. A multiresolution version of the algorithm is also implemented. The experimental results suggest that ellipses can be reliably detected in a given low resolution image and that the number of false detections can be reduced using the multiresolution algorithm

    Multispectral upconversion luminescence intensity ratios for ascertaining the tissue imaging depth

    Get PDF
    Upconversion nanoparticles (UCNPs) have in recent years emerged as excellent contrast agents for in vivo luminescence imaging of deep tissues. But information abstracted from these images is in most cases restricted to 2-dimensions, without the depth information. In this work, a simple method has been developed to accurately ascertain the tissue imaging depth based on the relative luminescence intensity ratio of multispectral NaYF4:Yb3+,Er3+ UCNPs. A theoretical mode was set up, where the parameters in the quantitative relation between the relative intensities of the upconversion luminescence spectra and the depth of the UCNPs were determined using tissue mimicking liquid phantoms. The 540 nm and 650 nm luminescence intensity ratios (G/R ratio) of NaYF4:Yb3+,Er3+ UCNPs were monitored following excitation path (Ex mode) and emission path (Em mode) schemes, respectively. The model was validated by embedding NaYF4:Yb3+,Er3+ UCNPs in layered pork muscles, which demonstrated a very high accuracy of measurement in the thickness up to centimeter. This approach shall promote significantly the power of nanotechnology in medical optical imaging by expanding the imaging information from 2-dimensional to real 3-dimensional
    • …
    corecore