13,884 research outputs found
Knowledge discovery for friction stir welding via data driven approaches: Part 2 – multiobjective modelling using fuzzy rule based systems
In this final part of this extensive study, a new systematic data-driven fuzzy modelling approach has been developed, taking into account both the modelling accuracy and its interpretability (transparency) as attributes. For the first time, a data-driven modelling framework has been proposed designed and implemented in order to model the intricate FSW behaviours relating to AA5083 aluminium alloy, consisting of the grain size, mechanical properties, as well as internal process properties. As a result, ‘Pareto-optimal’ predictive models have been successfully elicited which, through validations on real data for the aluminium alloy AA5083, have been shown to be accurate, transparent and generic despite the conservative number of data points used for model training and testing. Compared with analytically based methods, the proposed data-driven modelling approach provides a more effective way to construct prediction models for FSW when there is an apparent lack of fundamental process knowledge
Multiple-image encryption by compressive holography
We present multiple-image encryption (MIE) based on compressive holography. In the encryption, a holographic technique is employed to record multiple images simultaneously to form a hologram. The two-dimensional Fourier data of the hologram are then compressed by nonuniform sampling, which gives rise to compressive encryption. Decryption of individual images is cast into a minimization problem. The minimization retains the sparsity of recovered images in the wavelet basis. Meanwhile, total variation regularization is used to preserve edges in the reconstruction. Experiments have been conducted using holograms acquired by optical scanning holography as an example. Computer simulations of multiple images are subsequently demonstrated to illustrate the feasibility of the MIE scheme.published_or_final_versio
Blind sectional image reconstruction for optical scanning holography
Optical scanning holography is a powerful holographic recording technique in which only a single twodimensional scan is needed to record three-dimensional information. As in standard digital holography, for the reconstruction of a sectional image, the resulting data must then be postprocessed to obtain sectional content. We propose a blind sectional image reconstruction technique to automate the data processing. This reconstruction uses edge information to determine the appropriate Fresnel zone plates automatically and applies inverse imaging to recover the sectional images with significant suppression of the defocus noise. The experimental data used to verify the algorithm are measured from a physical implementation of the optical scanning holography system. © 2009 Optical Society of America.published_or_final_versio
Dynamics of Transformation from Segregation to Mixed Wealth Cities
We model the dynamics of the Schelling model for agents described simply by a
continuously distributed variable - wealth. Agents move to neighborhoods where
their wealth is not lesser than that of some proportion of their neighbors, the
threshold level. As in the case of the classic Schelling model where
segregation obtains between two races, we find here that wealth-based
segregation occurs and persists. However, introducing uncertainty into the
decision to move - that is, with some probability, if agents are allowed to
move even though the threshold level condition is contravened - we find that
even for small proportions of such disallowed moves, the dynamics no longer
yield segregation but instead sharply transition into a persistent mixed wealth
distribution. We investigate the nature of this sharp transformation between
segregated and mixed states, and find that it is because of a non-linear
relationship between allowed moves and disallowed moves. For small increases in
disallowed moves, there is a rapid corresponding increase in allowed moves, but
this tapers off as the fraction of disallowed moves increase further and
finally settles at a stable value, remaining invariant to any further increase
in disallowed moves. It is the overall effect of the dynamics in the initial
region (with small numbers of disallowed moves) that shifts the system away
from a state of segregation rapidly to a mixed wealth state.
The contravention of the tolerance condition could be interpreted as public
policy interventions like minimal levels of social housing or housing benefit
transfers to poorer households. Our finding therefore suggests that it might
require only very limited levels of such public intervention - just sufficient
to enable a small fraction of disallowed moves, because the dynamics generated
by such moves could spur the transformation from a segregated to mixed
equilibrium.Comment: 12 pages, 7 figure
Intrinsic ripples in graphene
The stability of two-dimensional (2D) layers and membranes is subject of a
long standing theoretical debate. According to the so called Mermin-Wagner
theorem, long wavelength fluctuations destroy the long-range order for 2D
crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be
crumpled. These dangerous fluctuations can, however, be suppressed by
anharmonic coupling between bending and stretching modes making that a
two-dimensional membrane can exist but should present strong height
fluctuations. The discovery of graphene, the first truly 2D crystal and the
recent experimental observation of ripples in freely hanging graphene makes
these issues especially important. Beside the academic interest, understanding
the mechanisms of stability of graphene is crucial for understanding electronic
transport in this material that is attracting so much interest for its unusual
Dirac spectrum and electronic properties. Here we address the nature of these
height fluctuations by means of straightforward atomistic Monte Carlo
simulations based on a very accurate many-body interatomic potential for
carbon. We find that ripples spontaneously appear due to thermal fluctuations
with a size distribution peaked around 70 \AA which is compatible with
experimental findings (50-100 \AA) but not with the current understanding of
stability of flexible membranes. This unexpected result seems to be due to the
multiplicity of chemical bonding in carbon.Comment: 14 pages, 6 figure
Non-Gaussian states for continuous variable quantum computation via Gaussian maps
We investigate non-Gaussian states of light as ancillary inputs for
generating nonlinear transformations required for quantum computing with
continuous variables. We consider a recent proposal for preparing a cubic phase
state, find the exact form of the prepared state and perform a detailed
comparison to the ideal cubic phase state. We thereby identify the main
challenges to preparing an ideal cubic phase state and describe the gates
implemented with the non-ideal prepared state. We also find the general form of
operations that can be implemented with ancilla Fock states, together with
Gaussian input states, linear optics and squeezing transformations, and
homodyne detection with feed forward, and discuss the feasibility of continuous
variable quantum computing using ancilla Fock states.Comment: 8 pages, 6 figure
Unexpected Neuronal Protection of SU5416 against 1-Methyl-4-Phenylpyridinium Ion-Induced Toxicity via Inhibiting Neuronal Nitric Oxide Synthase
SU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-phenylpyridinium ion (MPP +)-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons and impairment of swimming behavior in zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor, failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the neuroprotective effect of SU5416 is independent from its anti-angiogenic action. SU5416 potently reversed MPP +-increased intracellular nitric oxide level with an efficacy similar to 7-nitroindazole, a specific neuronal nitric oxide synthase (nNOS) inhibitor. Western blotting analysis showed that SU5416 reduced the elevation of nNOS protein expression induced by MPP +. Furthermore, SU5416 directly inhibited the enzyme activity of rat cerebellum nNOS with an IC 50 value of 22.7 μM. In addition, knock-down of nNOS expression using short hairpin RNA (shRNA) abolished the neuroprotective effects of SU5416 against MPP +-induced neuronal loss. Our results strongly demonstrate that SU5416 might exert its unexpected neuroprotective effects by concurrently reducing nNOS protein expression and directly inhibiting nNOS enzyme activity. In view of the capability of SU5416 to cross the blood-brain barrier and the safety for human use, our findings further indicate that SU5416 might be a novel drug candidate for neurodegenerative disorders, particularly those associated with NO-mediated neurotoxicity. © 2012 Cui et al.published_or_final_versio
Towards precision medicine for hypertension: a review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach
A single sub-km Kuiper Belt object from a stellar Occultation in archival data
The Kuiper belt is a remnant of the primordial Solar System. Measurements of
its size distribution constrain its accretion and collisional history, and the
importance of material strength of Kuiper belt objects (KBOs). Small, sub-km
sized, KBOs elude direct detection, but the signature of their occultations of
background stars should be detectable. Observations at both optical and X-ray
wavelengths claim to have detected such occultations, but their implied KBO
abundances are inconsistent with each other and far exceed theoretical
expectations. Here, we report an analysis of archival data that reveals an
occultation by a body with a 500 m radius at a distance of 45 AU. The
probability of this event to occur due to random statistical fluctuations
within our data set is about 2%. Our survey yields a surface density of KBOs
with radii larger than 250 m of 2.1^{+4.8}_{-1.7} x 10^7 deg^{-2}, ruling out
inferred surface densities from previous claimed detections by more than 5
sigma. The fact that we detected only one event, firmly shows a deficit of
sub-km sized KBOs compared to a population extrapolated from objects with r>50
km. This implies that sub-km sized KBOs are undergoing collisional erosion,
just like debris disks observed around other stars.Comment: To appear in Nature on December 17, 2009. Under press embargo until
1800 hours London time on 16 December. 19 pages; 7 figure
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
- …
