210,259 research outputs found
Exploiting Causal Independence in Bayesian Network Inference
A new method is proposed for exploiting causal independencies in exact
Bayesian network inference. A Bayesian network can be viewed as representing a
factorization of a joint probability into the multiplication of a set of
conditional probabilities. We present a notion of causal independence that
enables one to further factorize the conditional probabilities into a
combination of even smaller factors and consequently obtain a finer-grain
factorization of the joint probability. The new formulation of causal
independence lets us specify the conditional probability of a variable given
its parents in terms of an associative and commutative operator, such as
``or'', ``sum'' or ``max'', on the contribution of each parent. We start with a
simple algorithm VE for Bayesian network inference that, given evidence and a
query variable, uses the factorization to find the posterior distribution of
the query. We show how this algorithm can be extended to exploit causal
independence. Empirical studies, based on the CPCS networks for medical
diagnosis, show that this method is more efficient than previous methods and
allows for inference in larger networks than previous algorithms.Comment: See http://www.jair.org/ for any accompanying file
Recommended from our members
Energy and CO2 implications of decarbonization strategies for China beyond efficiency: Modeling 2050 maximum renewable resources and accelerated electrification impacts
Energy efficiency has played an important role in helping China achieve its domestic and international energy and climate change mitigation targets, but more significant near-term actions to decarbonize are needed to help China and the world meet the Paris Agreement goals. Accelerating electrification and maximizing supply-side and demand-side renewable adoption are two recent strategies being considered in China, but few bottom-up modeling studies have evaluated the potential near-term impacts of these strategies across multiple sectors. To fill this research gap, we use a bottom-up national end-use model that integrates energy supply and demand systems and conduct scenario analysis to evaluate even lower CO2 emissions strategies and subsequent pathways for China to go beyond cost-effective efficiency and fuel switching. We find that maximizing non-conventional electric and renewable technologies can help China peak its national CO2 emissions as early as 2025, with significant additional CO2 emission reductions on the order of 7 Gt CO2 annually by 2050. Beyond potential CO2 reductions from power sector decarbonization, significant potential lies in fossil fuel displaced by renewable heat in industry. These results suggest accelerating the utilization of non-conventional electric and renewable technologies present additional CO2 reduction opportunities for China, but new policies and strategies are needed to change technology choices in the demand sectors. Managing the pace of electrification in tandem with the pace of decarbonization of the power sector will also be crucial to achieving CO2 reductions from the power sector in a scenario of increased electrification
Bose-Einstein Condensates in Spin-Orbit Coupled Optical Lattices: Flat Bands and Superfluidity
Recently spin-orbit (SO) coupled superfluids in free space or harmonic traps
have been extensively studied, motivated by the recent experimental realization
of SO coupling for Bose-Einstein condensates (BEC). However, the rich physics
of SO coupled BEC in optical lattices has been largely unexplored. In this
paper, we show that in suitable parameter region the lowest Bloch state forms
an isolated flat band in a one dimensional (1D) SO coupled optical lattice,
which thus provides an experimentally feasible platform for exploring the
recently celebrated topological flat band physics in lattice systems. We show
that the flat band is preserved even with the mean field interaction in BEC. We
investigate the superfluidity of the BEC in SO coupled lattices through
dynamical and Landau stability analysis, and show that the BEC is stable on the
whole flat band.Comment: 5 pages, 4 figures, to appear in Phys. Rev.
The Finite Basis Problem for Kiselman Monoids
In an earlier paper, the second-named author has described the identities
holding in the so-called Catalan monoids. Here we extend this description to a
certain family of Hecke--Kiselman monoids including the Kiselman monoids
. As a consequence, we conclude that the identities of
are nonfinitely based for every and exhibit a finite
identity basis for the identities of each of the monoids and
.
In the third version a question left open in the initial submission has beed
answered.Comment: 16 pages, 1 table, 1 figur
R-matrices and Tensor Product Graph Method
A systematic method for constructing trigonometric R-matrices corresponding
to the (multiplicity-free) tensor product of any two affinizable
representations of a quantum algebra or superalgebra has been developed by the
Brisbane group and its collaborators. This method has been referred to as the
Tensor Product Graph Method. Here we describe applications of this method to
untwisted and twisted quantum affine superalgebras.Comment: LaTex 7 pages. Contribution to the APCTP-Nankai Joint Symposium on
"Lattice Statistics and Mathematical Physics", 8-10 October 2001, Tianjin,
Chin
Algebraic varieties with automorphism groups of maximal rank
We confirm, to some extent, the belief that a projective variety X has the
largest number (relative to the dimension of X) of independent commuting
automorphisms of positive entropy only when X is birational to a complex torus
or a quotient of a torus. We also include an addendum to an early paper though
it is not used in the present paper.Comment: Mathematische Annalen (to appear
Irrelevance of memory in the minority game
By means of extensive numerical simulations we show that all the distinctive
features of the minority game introduced by Challet and Zhang (1997), are
completely independent from the memory of the agents. The only crucial
requirement is that all the individuals must posses the same information,
irrespective of the fact that this information is true or false.Comment: 4 RevTeX pages, 4 figure
Photoionization cross sections of O II, O III, O IV, and O V: benchmarking R-matrix theory and experiments
For crucial tests between theory and experiment, ab initio close coupling
calculations are carried out for photoionization of O II, O III, O IV, O V. The
relativistic fine structure and resonance effects are studied using the
R-matrix and its relativistic variant the Breit Pauli R-matrix (BPRM)
approximation. Detailed comparison is made with high resolution experimental
measurements carried out in three different set-ups: Advanced Light Source at
Berkeley, and synchrotron radiation experiments at University of Aarhus and
University of Paris-Sud. The comparisons illustrate physical effects in
photoionization such as (i) fine structure, (ii) resolution, and (iii)
metastable components. Photoionization cross sections sigma{PI} of the ground
and a few low lying excited states of these ions obtained in the experimental
spectrum include combined features of these states. Theoretically calculated
resonances need to be resolved with extremely fine energy mesh for precise
comparison. In addition, prominent resonant features are observed in the
measured spectra from transitions allowed with relativistic fine structure, but
not in LS coupling. The sigma_{PI} are obtained for ground and metastable (i)
2s^22p^3(^4S^o, ^2D^o, ^2P^o) states of O II, (ii) 2s^22p^2(^3P,^1D,^1S) and
2s2p^3(^5S^o) states of O III, (iii) 2s^22p(^2P^o_J) and 2s2p^2(^4P_J) levels
of O IV, and (iv) 2s^2(^1S) and 2s2p(^3P^o,^1P^o) states of O V. It is found
that resonances in ground and metastable cross sections can be a diagnostic of
experimental beam composition, with potential ap plications to astrophysical
and laboratory plasma environments.Comment: 27 pages, 7 figs., submitted to Phys. Rev. A., text with high
resolution figures at http://www.astronomy.ohio-state.edu/~pradhan/Oions.p
Single-particle and Interaction Effects on the Cohesion and Transport and Magnetic Properties of Metal Nanowires at Finite Voltages
The single-particle and interaction effects on the cohesion, electronic
transport, and some magnetic properties of metallic nanocylinders have been
studied at finite voltages by using a generalized mean-field electron model.
The electron-electron interactions are treated in the self-consistent Hartree
approximation. Our results show the single-particle effect is dominant in the
cohesive force, while the nonzero magnetoconductance and magnetotension
coefficients are attributed to the interaction effect. Both single-particle and
interaction effects are important to the differential conductance and magnetic
susceptibility.Comment: 5 pages, 6 figure
- …