4,798 research outputs found

    Phase transitions in a holographic s+p model with backreaction

    Get PDF
    In a previous paper (arXiv:1309.2204, JHEP 1311 (2013) 087), we present a holographic s+p superconductor model with a scalar triplet charged under an SU(2) gauge field in the bulk. We also study the competition and coexistence of the s-wave and p-wave orders in the probe limit. In this work we continue to study the model by considering the full back-reaction The model shows a rich phase structure and various condensate behaviors such as the "n-type" and "u-type" ones, which are also known as reentrant phase transitions in condensed matter physics. The phase transitions to the p-wave phase or s+p coexisting phase become first order in strong back-reaction cases. In these first order phase transitions, the free energy curve always forms a swallow tail shape, in which the unstable s+p solution can also play an important role. The phase diagrams of this model are given in terms of the dimension of the scalar order and the temperature in the cases of eight different values of the back reaction parameter, which show that the region for the s+p coexisting phase is enlarged with a small or medium back reaction parameter, but is reduced in the strong back-reaction cases.Comment: 15 pages(two-column), 9 figure

    Molecular Lines of 13 Galactic Infrared Bubble Regions

    Full text link
    We investigated the physical properties of molecular clouds and star formation processes around infrared bubbles which are essentially expanding HII regions. We performed observations of 13 galactic infrared bubble fields containing 18 bubbles. Five molecular lines, 12CO (J=1-0), 13CO (J=1-0), C18O(J=1-0), HCN (J=1-0), and HCO+ (J=1-0), were observed, and several publicly available surveys, GLIMPSE, MIPSGAL, ATLASGAL, BGPS, VGPS, MAGPIS, and NVSS, were used for comparison. We find that these bubbles are generally connected with molecular clouds, most of which are giant. Several bubble regions display velocity gradients and broad shifted profiles, which could be due to the expansion of bubbles. The masses of molecular clouds within bubbles range from 100 to 19,000 solar mass, and their dynamic ages are about 0.3-3.7 Myr, which takes into account the internal turbulence pressure of surrounding molecular clouds. Clumps are found in the vicinity of all 18 bubbles, and molecular clouds near four of these bubbles with larger angular sizes show shell-like morphologies, indicating that either collect-and-collapse or radiation-driven implosion processes may have occurred. Due to the contamination of adjacent molecular clouds, only six bubble regions are appropriate to search for outflows, and we find that four of them have outflow activities. Three bubbles display ultra-compact HII regions at their borders, and one of them is probably responsible for its outflow. In total, only six bubbles show star formation activities in the vicinity, and we suggest that star formation processes might have been triggered.Comment: 55 Pages, 32 figures. Accepted for publication in A

    3D Trajectory Optimization for Energy-Efficient UAV Communication: A Control Design Perspective

    Get PDF
    This paper studies the three-dimensional (3D) trajectory optimization problem for unmanned aerial vehicle (UAV) aided wireless communication. Existing works mainly rely on the kinematic equations for UAV's mobility modeling, while its dynamic equations are usually missing. As a result, the planned UAV trajectories are piece-wise line segments in general, which may be difficult to implement in practice. By leveraging the concept of state-space model, a control-based UAV trajectory design is proposed in this paper, which takes into account both of the UAV's kinematic equations and the dynamic equations. Consequently, smooth trajectories that are amenable to practical implementation can be obtained. Moreover, the UAV's controller design is achieved along with the trajectory optimization, where practical roll angle and pitch angle constraints are considered. Furthermore, a new energy consumption model is derived for quad-rotor UAVs, which is based on the voltage and current flows of the electric motors and thus captures both the consumed energy for motion and the energy conversion efficiency of the motors. Numerical results are provided to validate the derived energy consumption model and show the effectiveness of our proposed algorithms

    Design of a modular, high step-up ratio DC–DC converter for HVDC applications integrating offshore wind power

    Get PDF
    High-power and high-voltage gain dc-dc converters are key to high-voltage direct current (HVDC) power transmission for offshore wind power. This paper presents an isolated ultra-high step-up dc-dc converter in matrix transformer configuration. A flyback-forward converter is adopted as the power cell and the secondary side matrix connection is introduced to increase the power level and to improve fault tolerance. Because of the modular structure of the converter, the stress on the switching devices is decreased and so is the transformer size. The proposed topology can be operated in column interleaved modes, row interleaved modes, and hybrid working modes in order to deal with the varying energy from the wind farm. Furthermore, fault-tolerant operation is also realized in several fault scenarios. A 400-W dc-dc converter with four cells is developed and experimentally tested to validate the proposed technique, which can be applied to high-power high-voltage dc power transmission

    No association between XRCC1 gene Arg194Trp polymorphism and risk of lung cancer: evidence based on an updated cumulative meta-analysis

    Get PDF
    X-ray repair cross-complementing group 1 (XRCC1) gene Arg194Trp polymorphism has been reported to be associated with risk of lung cancer in many published studies. Nevertheless, the research results were inconclusive and conflicting. To reach conclusive results, several meta-analysis studies were conducted by combining results from literature reports through pooling analysis. However, these previous meta-analysis studies were still not consistent. Hence, we used an updated and cumulative meta-analysis to get a more comprehensive and precise result from 25 case–control studies searching through the PubMed database up to September 1, 2013. The meta-analysis was carried out by the Comprehensive Meta-Analysis software and the odds ratio (OR) with 95 % confidence interval (CI) was used to estimate the pooled effect. The result involving 8,876 lung cancer patients and 11,210 controls revealed that XRCC1 Arg194Trp polymorphism was not associated with lung cancer risk [(OR = 0.97, 95 %CI = 0.92–1.03) for Trp vs. Arg; (OR = 0.92, 95 % CI = 0.85–0.98) for ArgTrp vs. ArgArg; (OR = 1.07, 95 % CI = 0.92–1.23) for TrpTrp vs. ArgArg; (OR = 0.93, 95 % CI = 0.87–1.00) for (TrpTrp + ArgTrp) vs. ArgArg; and (OR = 1.08, 95 % CI = 0.94–1.25) for TrpTrp vs. (ArgTrp + ArgArg)]. The cumulative meta-analysis showed that the results maintained the same, while the ORs with 95 % CI were more stable with the accumulation of case–control studies. The sensitivity and subgroups analyses showed that the results were robust and not affected by any single study with no publication bias. Relevant studies might not be needed for supporting these results
    • …
    corecore