338 research outputs found

    Finite element method for obtaining the regularized photon Green function in lossy material

    Full text link
    Photon Green function (GF) is the vital and most decisive factor in the field of quantum light-matter interaction. It is divergent with two equal space arguments in arbitrary-shaped lossy structure and should be regularized. We introduce a finite element method for calculating the regularized GF. It is expressed by the averaged radiation electric field over the finite-size of the photon emitter. For emitter located in homogeneous lossy material, excellent agreement with the analytical results is found for both real cavity model and virtual cavity model. For emitter located in a metal nano-sphere, the regularized scattered GF, which is the difference between the regularized GF and the analytical regularized one in homogeneous space, agrees well with the analytical scattered GF

    Comprehensive Assessment of Toxicity in ChatGPT

    Full text link
    Moderating offensive, hateful, and toxic language has always been an important but challenging topic in the domain of safe use in NLP. The emerging large language models (LLMs), such as ChatGPT, can potentially further accentuate this threat. Previous works have discovered that ChatGPT can generate toxic responses using carefully crafted inputs. However, limited research has been done to systematically examine when ChatGPT generates toxic responses. In this paper, we comprehensively evaluate the toxicity in ChatGPT by utilizing instruction-tuning datasets that closely align with real-world scenarios. Our results show that ChatGPT's toxicity varies based on different properties and settings of the prompts, including tasks, domains, length, and languages. Notably, prompts in creative writing tasks can be 2x more likely than others to elicit toxic responses. Prompting in German and Portuguese can also double the response toxicity. Additionally, we discover that certain deliberately toxic prompts, designed in earlier studies, no longer yield harmful responses. We hope our discoveries can guide model developers to better regulate these AI systems and the users to avoid undesirable outputs

    Baicalein inhibits acinar-to-ductal metaplasia of pancreatic acinal cell AR42J via improving the inflammatory microenvironment

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers. Recent research has demonstrated that chronic pancreatitis (CP) is associated with an increased risk of PDAC, partly due to acinar-to-ductal metaplasia (ADM). Baicalein has been shown to exert anti-inflammatory and anti-tumor effects for CP or PDAC, respectively. The aim of our study was to investigate the effect of baicalein, and the putative underlying mechanism, on inflammatory cytokines-induced ADM of rat pancreatic acinar cell line AR42J. To investigate ADM and baicalein effects in vitro, AR42J were treated with recombinant rat Tumor Necrosis Factor alpha (rTNFα) with or without baicalein for 5 days. Results showed that rTNFα-induced AR42J cells switched their phenotype from dominantly amylase-positive acinar cells to dominantly cytokeratin 19-positive ductal cells. Moreover, expression of the transcripts for TNFα or Hes-1, a Notch target, was up-regulated in these cells. Interestingly, baicalein reduced the population of ADM as well as cytokines gene expression but not Hes-1. Baicalein inhibited NF-κB activation induced by rTNFα in AR42J, but no effect on Notch 1activation. Moreover, baicalein suppressed the secretion of TNFα and Nitric Oxide (NO) in macrophages stimulated with LPS and further inhibited ADM of conditional medium-treated AR42J cells. Baicalein also suppressed the inflammatory response of LPS-activated macrophages, thereby inhibited ADM of AR42J by altering their microenvironment. Taken together, our study indicates that baicalein reduces rTNFα-induced ADM of AR42J cells by inhibiting NF-κB activation. It also sheds new light on Chinese material medica therapy of pancreatitis and thereby prevention of PDAC

    Dysfunction of Emotion Regulation in Mild Cognitive Impairment Individuals Combined With Depressive Disorder: A Neural Mechanism Study

    Get PDF
    Depression increases the risk of progression from mild cognitive impairment (MCI) to dementia, where impaired emotion regulation is a core symptom of depression. However, the neural mechanisms underlying the decreased emotion regulation in individuals with MCI combined with depressive symptoms are not precise. We assessed the behavioral performance by emotion regulation tasks and recorded event-related electroencephalography (EEG) signals related to emotion regulation tasks simultaneously. EEG analysis, including event-related potential (ERP), event-related spectral perturbation (ERSP), functional connectivity and graph theory, was used to compare the difference between MCI individuals and MCI depressed individuals in behavioral performance, the late positive potential (LPP) amplitudes, neural oscillations and brain networks during the processing of emotional stimuli. We found that MCI depressed individuals have negative preferences and are prone to allocate more attentional resources to negative stimuli. Results suggested that theta and alpha oscillations activity is increased, and gamma oscillations activity is decreased during negative stimulus processing in MCI depressed individuals, thus indicating that the decreased emotion regulation in MCI depressed individuals may be associated with enhanced low-frequency and decreased high-frequency oscillations activity. Functional connectivity analysis revealed a decrease in functional connectivity in the left cerebral hemisphere of the alpha band and an increase in functional connectivity in the right cerebral hemisphere of the alpha band in MCI depressed individuals. Graph theory analysis suggested that global network metrics, including clustering coefficients and disassortative, decreased, while nodal and modular network metrics regarding local nodal efficiency, degree centrality, and betweenness centrality were significantly increased in the frontal lobe and decreased in the parieto-occipital lobe, which was observed in the alpha band, further suggesting that abnormal alpha band network connectivity may be a potential marker of depressive symptoms. Correlational analyses showed that depressive symptoms were closely related to emotion regulation, power oscillations and functional connectivity. In conclusion, the dominant processing of negative stimuli, the increased low-frequency oscillations activity and decreased high-frequency activity, so as the decrease in top-down information processing in the frontal parieto-occipital lobe, results in the abnormality of alpha-band network connectivity. It is suggested that these factors, in turn, contribute to the declined ability of MCI depressed individuals in emotion regulation

    Cycling comfort on asphalt pavement: Influence of the pavement-tyre interface on vibration

    Get PDF
    Attainment of cycling comfort on urban roads encourages travelers to use bicycles more often, which has social and environment benefits such as to reduce congestion, air pollution and carbon emissions. Cycling vibration is responsible for the cyclists’ perception of (dis)comfort. How asphalt pavement's surface characteristics relate to cycling comfort, however, remains undiscovered. In this study, the cycling vibration intensity on 46 sections of 24 urban roads was tested using a dynamic cycling comfort measure system while the cyclists’ perception of vibration was identified via questionnaires; the cycling comfort was then defined based on the cycling vibration. To record the accurate pavement-tyre interface under a stable environment, a total of 19 pavement sections were scanned using a 3D digital camera. These 3D models were then 3D printed, which are used to conduct the pressure film test using a self-developed pavement-tyre interface test system. Three ranges of pressure films were adopted to characterize the pavement-tyre interface via 9 parameters, namely contact area (A c ), unit bearing area (B u ), stress intensity (S i ), stress uniformity (S u ), kurtosis (S ku ), spacing (Sp a ), maximum peak spacing (Sp max ), radius ratio (R r ) and fractal dimension (F d ), in consideration of the area characteristics, pressure amplitude, peak spacing and shape of the interface. Finally, the significant interface parameters were identified, and the regression model between interface parameters and cycling comfort was established. Results show that the cycling vibration was described to be ‘very comfortable’ when the human exposure to vibration level (a wv ) was less than 1.78 m/s 2 ; ‘comfortable’ when the a wv was between 1.78 m/s 2 and 2.20 m/s 2 ; and ‘uncomfortable’ when the a wv was greater than 2.20 m/s 2 . The average stress on rear wheel-pavement interface is higher than that of the front wheel. B u-0.6 , Sp a-0.6 , and F d-0.6 are significant to cycling vibration. The 2LW pressure film is recommended for use to measure the bicycle pavement-tyre interface. The recommended interface characteristics are less than 7 mm 2 of the unit bearing area, 6 mm of average spacing and 2.38 of fractal dimension. Finally, dense asphalt mixture performs better in providing cycling comfort than the gap-graded asphalt mixture. Results of this study contribute to current knowledge on bike lane comfort and pavement design, the findings should be interested in cyclists, transport planners, and road authorities

    N-linoleyltyrosine resisted the growth of non-small cell lung cancer cells via the regulation of CB1 and CB2 involvement of PI3K and ERK pathways

    Get PDF
    Background: N-linoleyltyrosine (NITyr), one of the anandamide analogs, exerts activity via the endocannabinoid receptors (CB1 and CB2), which showed anti-tumor effects in various tumors. Therefore, we speculated that NITyr might show anti-non-small cell lung cancer (NSCLC) effects via the CB1 or CB2 receptor. The purpose of the investigation was to reveal the anti-tumor ability of NITyr on A549 cells and its mechanisms.Methods: The viability of A549 cells was measured by MTT assay, and the cell cycle and apoptosis were both examined by flow cytometry; in addition, cell migration was tested by wound healing assay. Apoptosis-related markers were measured by immunofluorescence. The downstream signaling pathways (PI3K, ERK, and JNK) of CB1 or CB2 were examined through Western blotting. The expressions of CB1 and CB2 were detected by immunofluorescence. Finally, the AutoDock software was used to validate the binding affinity between the targets, such as CB1 and CB2, with NITyr.Results: We found that NITyr inhibited cell viability, hindered the cell cycle, resulted in apoptosis, and inhibited migration. The CB1 inhibitor, AM251, and the CB2 inhibitor, AM630, weakened the aforementioned phenomenon. The immunofluorescence assay suggested that NITyr upregulated the expression of CB1 and CB2. Western blot analysis indicated that NITyr upregulated the expression of p-ERK, downregulated the expression of p-PI3K, and did not affect p-JNK expression. In conclusion, NITyr showed a role in inhibiting NSCLC through the activation of CB1 and CB2 receptors involved in PI3K and ERK pathways

    Original Research MicroRNA-30a promotes invasiveness and metastasis in vitro and in vivo through epithelial-mesenchymal transition and results in poor survival of nasopharyngeal carcinoma patients

    Get PDF
    Abstract Although microRNA-30a (miR-30a) has been shown to regulate cancer metastasis, the molecular mechanism has not yet been clearly elucidated in nasopharyngeal carcinoma (NPC). The present study was to investigate the miR-30a expression pattern and its potential functions and further to identify its target gene and corresponding clinical applications in NPC. MiR-30a was identified to be down-regulated in NPC primary tumors compared with metastatic tumors using quantitative real-time PCR. Furthermore, over-expression of miR-30a transfected with precursor increased the ability of metastasis and invasion of NPC tumor cells in vivo and in vitro. E-cadherin was screened as a putative target gene of miR-30a by computational algorithms. Luciferase reporter assays showed that over-expression of miR-30a directly reduced the activity of a luciferase transcript combined with the 3 0 -untranslated region (3 0 -UTR) of E-cadherin. Kaplan-Meier survival analysis and log-rank test were analyzed for 1077 NPC patients for overall survival, indicating that a high expression of E-cadherin was beneficial for NPC prognosis (P ¼ 0.001). Importantly, NPC patients with high expression of E-cadherin had much lower risk of poor prognosis (hazard ratio ¼ 0.757, P ¼ 0.017) using multivariate analysis. In conclusion, miR-30a could play an important role in regulating NPC metastasis and potentially provide useful guidelines for individualized therapy
    corecore