403 research outputs found

    Accelerating Generic Graph Neural Networks via Architecture, Compiler, Partition Method Co-Design

    Full text link
    Graph neural networks (GNNs) have shown significant accuracy improvements in a variety of graph learning domains, sparking considerable research interest. To translate these accuracy improvements into practical applications, it is essential to develop high-performance and efficient hardware acceleration for GNN models. However, designing GNN accelerators faces two fundamental challenges: the high bandwidth requirement of GNN models and the diversity of GNN models. Previous works have addressed the first challenge by using more expensive memory interfaces to achieve higher bandwidth. For the second challenge, existing works either support specific GNN models or have generic designs with poor hardware utilization. In this work, we tackle both challenges simultaneously. First, we identify a new type of partition-level operator fusion, which we utilize to internally reduce the high bandwidth requirement of GNNs. Next, we introduce partition-level multi-threading to schedule the concurrent processing of graph partitions, utilizing different hardware resources. To further reduce the extra on-chip memory required by multi-threading, we propose fine-grained graph partitioning to generate denser graph partitions. Importantly, these three methods make no assumptions about the targeted GNN models, addressing the challenge of model variety. We implement these methods in a framework called SwitchBlade, consisting of a compiler, a graph partitioner, and a hardware accelerator. Our evaluation demonstrates that SwitchBlade achieves an average speedup of 1.85×1.85\times and energy savings of 19.03×19.03\times compared to the NVIDIA V100 GPU. Additionally, SwitchBlade delivers performance comparable to state-of-the-art specialized accelerators

    AdaptGear: Accelerating GNN Training via Adaptive Subgraph-Level Kernels on GPUs

    Full text link
    Graph neural networks (GNNs) are powerful tools for exploring and learning from graph structures and features. As such, achieving high-performance execution for GNNs becomes crucially important. Prior works have proposed to explore the sparsity (i.e., low density) in the input graph to accelerate GNNs, which uses the full-graph-level or block-level sparsity format. We show that they fail to balance the sparsity benefit and kernel execution efficiency. In this paper, we propose a novel system, referred to as AdaptGear, that addresses the challenge of optimizing GNNs performance by leveraging kernels tailored to the density characteristics at the subgraph level. Meanwhile, we also propose a method that dynamically chooses the optimal set of kernels for a given input graph. Our evaluation shows that AdaptGear can achieve a significant performance improvement, up to 6.49×6.49 \times (1.87×1.87 \times on average), over the state-of-the-art works on two mainstream NVIDIA GPUs across various datasets

    Wuqinxi qigong as an alternative exercise for improving risk factors associated with metabolic syndrome: A meta-analysis of randomized controlled trials

    Get PDF
    © 2019 by the authors. Background: The improvement of living standards has led to increases in the prevalence of hypokinetic diseases. In particular, multifactorial complex diseases, such as metabolic syndrome, are becoming more prevalent. Currently, developing effective methods to combat or prevent metabolic syndrome is of critical public health importance. Thus, we conducted a systematic review to evaluate the existing literature regarding the effects of Wuqinxi exercise on reducing risk factors related to metabolic syndrome. Methods: Both English- and Chinese-language databases were searched for randomized controlled trials investigating the effects of Wuqinxi on these outcomes. Meanwhile, we extracted usable data for computing pooled effect size estimates, along with the random-effects model. Results: The synthesized results showed positive effects of Wuqinxi exercise on systolic blood pressure (SBP, SMD = 0.62, 95% CI 0.38 to 0.85, p \u3c 0.001, I2 = 24.06%), diastolic blood pressure (DBP, SMD = 0.62, 95% CI 0.22 to 1.00, p \u3c 0.001, I2 = 61.28%), total plasma cholesterol (TC, SMD = 0.88, 95% CI 0.41 to 1.36, p \u3c 0.001, I2 = 78.71%), triglyceride (TG, SMD = 0.87, 95% CI 0.49 to 1.24, p \u3c 0.001, I2 = 67.22%), low-density lipoprotein cholesterol (LDL-C, SMD = 1.24, 95% CI 0.76 to 1.72, p \u3c 0.001, I2 = 78.27%), and high-density lipoprotein cholesterol (HDL, SMD = 0.95, 95% CI 0.43 to 1.46, p \u3c 0.001, I2 = 82.27%). In addition, regression results showed that longer-duration Wuqinxi intervention significantly improved DBP (β = 0.00016, Q = 5.72, df = 1, p = 0.02), TC (β = -0.00010, Q = 9.03, df = 1, p = 0.01), TG (β = 0.00012, Q = 6.23, df = 1, p = 0.01), and LDL (β = 0.00011, Q = 5.52, df = 1, p = 0.02). Conclusions: Wuqinxi may be an effective intervention to alleviate the cardiovascular disease risk factors of metabolic syndrome

    Nanoplanktonic diatom rapidly alters sinking velocity via regulating lipid content and composition in response to changing nutrient concentrations

    Get PDF
    Diatom sinking plays a crucial role in the global carbon cycle, accounting for approximately 40% of marine particulate organic carbon export. While oceanic models typically represent diatoms as microphytoplankton (> 20 μm), it is important to recognize that many diatoms fall into the categories of nanophytoplankton (2-20 μm) and picophytoplankton (< 2 μm). These smaller diatoms have also been found to significantly contribute to carbon export. However, our understanding of their sinking behavior and buoyancy regulation mechanisms remains limited. In this study, we investigate the sinking behavior of a nanoplanktonic diatom, Phaeodactylum tricornutum (P. tricornutum), which exhibits rapid changes in sinking behavior in response to varying nutrient concentrations. Our results demonstrate that a higher sinking rate is observed under phosphate limitation and depletion. Notably, in phosphate depletion, the sinking rate of P. tricornutum was 0.79 ± 0.03 m d-1, nearly three times that of the previously reported sinking rates for Skeletonema costatum, Ditylum brightwellii, and Chaetoceros gracile. Furthermore, during the first 6 h of phosphate spike, the sinking rate of P. tricornutum remained consistently high. After 12 h of phosphate spike, the sinking rate decreased to match that of the phosphate repletion phase, only to increase again over the next 12 hours due to phosphate depletion. This rapid sinking behavior contributes to carbon export and potentially allows diatoms to exploit nutrient-rich patches when encountering increased nutrient concentrations. We also observed a significant positive correlation (P< 0.001) between sinking rate and lipid content (R = 0.91) during the phosphate depletion and spike experiment. It appears that P. tricornutum regulates its sinking rate by increasing intracellular lipid content, particularly digalactosyldiacylglycerol, hexosyl ceramide, monogalactosyldiacylglycerol, and triglycerides. Additionally, P. tricornutum replaces phospholipids with more dense membrane sulfolipids, such as sulfoquinovosyldiacylglycerol under phosphate shortage. These findings shed light on the intricate relationship between nutrient availability, sinking behavior, and lipid composition in diatoms, providing insights into their adaptive strategies for carbon export and nutrient utilization

    Optimizing interplanar spacing, oxygen vacancies and micromorphology via lithium-ion pre-insertion into ammonium vanadate nanosheets for advanced cathodes in aqueous zinc-ion batteries

    Get PDF
    Ammonium vanadates, featuring an N─H···O hydrogen bond network structure between NH4+ and V─O layers, have become popular cathode materials for aqueous zinc-ion batteries (AZIBs). Their appeal lies in their multi-electron transfer, high specific capacity, and facile synthesis. However, a major drawback arises as Zn2+ ions tend to form bonds with electronegative oxygen atoms between V─O layers during cycling, leading to irreversible structural collapse. Herein, Li+ pre-insertion into the intermediate layer of NH4V4O10 is proposed to enhance the electrochemical activity of ammonium vanadate cathodes for AZIBs, which extends the interlayer distance of NH4V4O10 to 9.8 Å and offers large interlaminar channels for Zn2+ (de)intercalation. Moreover, Li+ intercalation weakens the crystallinity, transforms the micromorphology from non-nanostructured strips to ultrathin nanosheets, and increases the level of oxygen defects, thus exposing more active sites for ion and electron transport, facilitating electrolyte penetration, and improving electrochemical kinetics of electrode. In addition, the introduction of Li+ significantly reduces the bandgap by 0.18 eV, enhancing electron transfer in redox reactions. Leveraging these unique advantages, the Li+ pre-intercalated NH4V4O10 cathode exhibits a high reversible capacity of 486.1 mAh g−1 at 0.5 A g−1 and an impressive capacity retention rate of 72% after 5,000 cycles at 5 A g−1

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages
    corecore