429 research outputs found

    Light Field Saliency Detection with Deep Convolutional Networks

    Get PDF
    Light field imaging presents an attractive alternative to RGB imaging because of the recording of the direction of the incoming light. The detection of salient regions in a light field image benefits from the additional modeling of angular patterns. For RGB imaging, methods using CNNs have achieved excellent results on a range of tasks, including saliency detection. However, it is not trivial to use CNN-based methods for saliency detection on light field images because these methods are not specifically designed for processing light field inputs. In addition, current light field datasets are not sufficiently large to train CNNs. To overcome these issues, we present a new Lytro Illum dataset, which contains 640 light fields and their corresponding ground-truth saliency maps. Compared to current light field saliency datasets [1], [2], our new dataset is larger, of higher quality, contains more variation and more types of light field inputs. This makes our dataset suitable for training deeper networks and benchmarking. Furthermore, we propose a novel end-to-end CNN-based framework for light field saliency detection. Specifically, we propose three novel MAC (Model Angular Changes) blocks to process light field micro-lens images. We systematically study the impact of different architecture variants and compare light field saliency with regular 2D saliency. Our extensive comparisons indicate that our novel network significantly outperforms state-of-the-art methods on the proposed dataset and has desired generalization abilities on other existing datasets.Comment: 14 pages, 14 figure

    Microwave Photonic Imaging Radar with a Millimeter-level Resolution

    Full text link
    Microwave photonic radars enable fast or even real-time high-resolution imaging thanks to its broad bandwidth. Nevertheless, the frequency range of the radars usually overlaps with other existed radio-frequency (RF) applications, and only a centimeter-level imaging resolution has been reported, making them insufficient for civilian applications. Here, we propose a microwave photonic imaging radar with a millimeter-level resolution by introducing a frequency-stepped chirp signal based on an optical frequency shifting loop. As compared with the conventional linear-frequency modulated (LFM) signal, the frequency-stepped chirp signal can bring the system excellent capability of anti-interference. In an experiment, a frequency-stepped chirp signal with a total bandwidth of 18.2 GHz (16.9 to 35.1 GHz) is generated. Postprocessing the radar echo, radar imaging with a two-dimensional imaging resolution of ~8.5 mmƗ\times~8.3 mm is achieved. An auto-regressive algorithm is used to reconstruct the disturbed signal when a frequency interference exists, and the high-resolution imaging is sustained

    Bisphosphonates Cause Osteonecrosis of the Jaw-Like Disease in Mice

    Get PDF
    Bisphosphonate-associated osteonecrosis of the jaw (BONJ) is a morbid bone disease linked to long-term bisphosphonate use. Despite its broad health impact, mechanistic study is lacking. In this study, we have established a mouse model of BONJ-like disease based on the equivalent clinical regimen in myeloma patients, a group associated with high risk of BONJ. We demonstrate that the murine BONJ-like disease recapitulates major clinical and radiographical manifestations of the human disease, including characteristic features of osseous sclerosis, sequestra, avascular, and radiopaque alveolar bone in the jaw that persists beyond a normal course of wound healing following tooth extraction. We find that long-term administration of bisphosphonates results in an increase in the size and number of osteoclasts and the formation of giant osteoclast-like cells within the alveolar bone. We show that the development of necrotic bone and impaired soft tissue healing in our mouse model is dependent on long-term use of high-dose bisphosphonates, immunosuppressive and chemotherapy drugs, as well as mechanical trauma. Most importantly, we demonstrate that bisphosphonate is the major cause of BONJ-like disease in mice, mediated in part by its ability to suppress osseous angiogenesis and bone remodeling. The availability of this novel mouse model of BONJ-like disease will help elucidate the pathophysiology of BONJ and ultimately develop novel approaches for prevention and treatment of human BONJ. Copyright Ā© American Society for Investigative Pathology

    Surface properties of novel wood-based reinforced composites manufactured from crushed veneers and phenolic resins

    Get PDF
    This study was performed to determine the surface properties of novel wood-based reinforced composites made from poplar veneers and phenolic resins. The veneers with different thickness (1.8, 4, 6, 8 mm) were finely crushed and then were impregnated with phenolic resins to achieve different resin loading (12, 14, 18%). Finally, they were laminated or random paved to manufacture novel wood-based reinforced composites with different target densities (0.8-1.1 g cm-3). With increased veneer thickness or resin content, the hardness of novel wood-based reinforced composites decreased and their roughness increased. The increase of density contributed to the increased hardness and decreased roughness. The surface wettability of novel wood-based reinforced composites appeared to be closely related to their surface roughness. There was a negative correlation between contact angle and roughness. The novel wood-based reinforced composites prepared by laminated mat formation showed higher hardness, lower roughness than those by random mat formation. Such data of surface properties can be applied to design the novel wood-based reinforced composites products with desired quality and provide basic information for further panel processing

    A Novel Strategy of US3 Codon De-Optimization for Construction of an Attenuated Pseudorabies Virus against High Virulent Chinese Pseudorabies Virus Variant

    Get PDF
    In this study, we applied bacterial artificial chromosome (BAC) technology with PRVĪ”TK/gE/gI as the base material to replace the first, central, and terminal segments of the US3 gene with codon-deoptimized fragments via two-step Red-mediated recombination in E. coli GS1783 cells. The three constructed BACs were co-transfected with gI and part of gE fragments carrying homologous sequences (gI+gEā€™), respectively, in swine testicular cells. These three recombinant viruses with US3 codon de-optimization ((PRVĪ”TK&gE-US3deopāˆ’1, PRVĪ”TK&gE-US3deopāˆ’2, and PRVĪ”TK&gE-US3deopāˆ’3) were obtained and purified. These three recombinant viruses exhibited similar growth kinetics to the parental AH02LA strain, stably retained the deletion of TK and gE gene fragments, and stably inherited the recoded US3. Mice were inoculated intraperitoneally with the three recombinant viruses or control virus PRVĪ”TK&gEAH02 at a 107.0 TCID50 dose. Mice immunized with PRVĪ”TK&gE-US3deopāˆ’1 did not develop clinical signs and had a decreased virus load and attenuated pathological changes in the lungs and brain compared to the control group. Moreover, immunized mice were challenged with 100 LD50 of the AH02LA strain, and PRVĪ”TK&gE-US3deopāˆ’1 provided similar protection to that of the control virus PRVĪ”TK&gEAH02. Finally, PRVĪ”TK&gE-US3deopāˆ’1 was injected intramuscularly into 1-day-old PRV-negative piglets at a dose of 106.0 TCID50. Immunized piglets showed only slight temperature reactions and mild clinical signs. However, high levels of seroneutralizing antibody were produced at 14 and 21 days post-immunization. In addition, the immunization of PRVĪ”TK&gE-US3deopāˆ’1 at a dose of 105.0 TCID50 provided complete clinical protection and prevented virus shedding in piglets challenged by 106.5 TCID50 of the PRV AH02LA variant at 1 week post immunization. Together, these findings suggest that PRVĪ”TK&gE-US3deopāˆ’1 displays great potential as a vaccine candidate

    Mechanistic evaluation of the inhibitory effect of four SGLT-2 inhibitors on SGLT 1 and SGLT 2 using physiologically based pharmacokinetic (PBPK) modeling approaches

    Get PDF
    Sodium-glucose co-transporter type 2 (SGLT 2, gliflozins) inhibitors are potent orally active drugs approved for managing type 2 diabetes. SGLT 2 inhibitors exert a glucose-lowering effect by suppressing sodium-glucose co-transporters 1 and 2 in the intestinal and kidney proximal tubules. In this study, we developed a physiologically based pharmacokinetic (PBPK) model and simulated the concentrations of ertugliflozin, empagliflozin, henagliflozin, and sotagliflozin in target tissues. We used the perfusion-limited model to illustrate the disposition of SGLT 2 inhibitors in vivo. The modeling parameters were obtained from the references. Simulated steady-state plasma concentration-time curves of the ertugliflozin, empagliflozin, henagliflozin, and sotagliflozin are similar to the clinically observed curves. The 90% prediction interval of simulated excretion of drugs in urine captured the observed data well. Furthermore, all corresponding model-predicted pharmacokinetic parameters fell within a 2-fold prediction error. At the approved doses, we estimated the effective concentrations in intestinal and kidney proximal tubules and calculated the inhibition ratio of SGLT transporters to differentiate the relative inhibition capacities of SGLT1 and 2 in each gliflozin. According to simulation results, four SGLT 2 inhibitors can nearly completely inhibit SGLT 2 transporter at the approved dosages. Sotagliflozin exhibited the highest inhibition activity on SGLT1, followed by ertugliflozin, empagliflozin, and henagliflozin, which showed a lower SGLT 1 inhibitory effect. The PBPK model successfully simulates the specific target tissue concentration that cannot be measured directly and quantifies the relative contribution toward SGLT 1 and 2 for each gliflozin
    • ā€¦
    corecore