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Light Field Saliency Detection With
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Abstract— Light field imaging presents an attractive alternative
to RGB imaging because of the recording of the direction of
the incoming light. The detection of salient regions in a light
field image benefits from the additional modeling of angular
patterns. For RGB imaging, methods using CNNs have achieved
excellent results on a range of tasks, including saliency detec-
tion. However, it is not trivial to use CNN-based methods for
saliency detection on light field images because these methods
are not specifically designed for processing light field inputs.
In addition, current light field datasets are not sufficiently large
to train CNNs. To overcome these issues, we present a new
Lytro Illum dataset, which contains 640 light fields and their
corresponding ground-truth saliency maps. Compared to current
publicly available light field saliency datasets [1], [2], our new
dataset is larger, of higher quality, contains more variation and
more types of light field inputs. This makes our dataset suitable
for training deeper networks and benchmarking. Furthermore,
we propose a novel end-to-end CNN-based framework for light
field saliency detection. Specifically, we propose three novel MAC
(Model Angular Changes) blocks to process light field micro-lens
images. We systematically study the impact of different archi-
tecture variants and compare light field saliency with regular
2D saliency. Our extensive comparisons indicate that our novel
network significantly outperforms state-of-the-art methods on the
proposed dataset and has desired generalization abilities on other
existing datasets.

Index Terms— Saliency detection, light field, micro-lens images,
angular changes, deep neural network.

I. INTRODUCTION

L IGHT field imaging [3] not only captures the color inten-
sity of each pixel but also the directions of all incoming

light rays. The directional information inherent in a light field
implicitly defines the geometry of the observed scene [4].
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Fig. 1. Illustrations of light field representations. (a) Micro-lens image
representation with the given location

(
x∗, y∗)

. (b) Micro-lens images at
sampled spatial locations. (c) Sub-aperture image representation with the given
viewpoint

(
u∗, v∗)

. (d) Sub-aperture images at sampled viewpoints, where
(u0, v0) represents the central viewpoint.

In recent years, commercial and industrial light field cameras
with a micro-lens array inserted between the main lens and the
photosensor, such as Lytro [5] and Raytrix [6], have taken light
field imaging into a new era. The obtained light field can be
represented by 4D parameterization (u, v, x, y) [7], where uv
denotes the viewpoint plane and xy denotes the image plane,
as shown in Figures 1(a) and (c). The 4D light field can be
further converted into multiple 2D light field images, such
as multi-view sub-aperture images [7], micro-lens images [5],
and epipolar plane images (EPIs) [8]. These light field
images have been exploited to improve the performance of
many applications, such as material recognition [9], face
recognition [10], [11], depth estimation [12]–[16] and super-
resolution [8], [17], [18].

This paper studies saliency detection on light field images.
Previous work [1], [2], [19], [20] has focused on developing
hand-crafted light field features at the superpixel level by
utilizing heterogenous types of light field images (e.g., color,
depth, focusness, or flow). These methods strongly rely on
low-level cues and are less capable of extracting high-level
semantic concepts. This makes them unsuitable for handling
highly cluttered backgrounds or predicting uniform regions
inside salient objects.

In recent years, convolutional neural networks (CNNs)
have been successfully applied to learn an implicit rela-
tion between pixels and salience in RGB images [21]–[27].
These CNN-based methods have been combined with object
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Fig. 2. Architecture of our network. The MAC building block converts the micro-lens image array of light fields into feature maps, which are processed by
a modified DeepLab-v2 backbone model.

proposals [21], post-processing steps [22], contextual fea-
tures [23], [24], attention models [25], [26], and recurrent
structures [27]. Although these approaches achieve improved
performance over saliency detection on benchmark datasets,
they often adopt complex network architectures, which limits
generalization and complicates training. Besides, the limited
information in RGB images does not allow to fully exploit
geometric constraints, which have been shown to be beneficial
in saliency detection [28], [29].

Even with the emergence of CNNs for RGB images, there
are still two key issues for saliency detection on light field
images: (1) Dataset. The RGB datasets [30]–[32] are not
sufficient to address significant variations in illumination,
scale and background clutter. Previous publicly available light
field saliency datasets LFSD [1] and HFUT-Lytro [2] include
only 100 and 255 light fields, respectively, captured by the
first-generation Lytro cameras. They are not large enough to
train deep convolutional networks without severely overfitting.
In addition, the unavailability of multi-views in the LFSD
dataset and the color distortion of the sub-aperture images
in the HFUT-Lytro dataset impede an evaluation of exist-
ing methods. (2) Architecture. The adoption of CNN-based
architectures in light field saliency detection is not trivial
because the existing CNNs for 2D images do not support the
representation of 4D light field data. Thus, novel architectures
must be developed for saliency detection in light field images.

There has been relatively little work on light field saliency
detection using deep learning technologies. One recent and
concurrent work [33] investigates different fusion structures
to integrate the focal stack stream and the all-focus stream
for saliency detection. To increase the diversity of the input
data, they added adversarial examples to facilitate training and
improving the robustness of the network. Besides, [33] builds
a larger light field dataset for saliency detection, which is
typically specialized on scenes with many focal slices located
at different image depths. In this paper, we propose a novel
method to predict the salience of light fields using CNNs.
While both methods utilize deep learning technologies, ours is
focused on the multi-view aspect based on micro-lens images,
whereas their framework [33] is specifically designed for
integrating light field data by using focal stacks and a recurrent
network.

Specifically, to explore spatial and multi-view properties
of light fields for saliency detection, we propose a novel
deep convolutional network based on the modified DeepLab-
v2 model [34] as well as several architecture variants (termed
as MAC blocks) specifically designed for light field images.
Our blocks aim to Model Angular Changes (MAC) from
micro-lens images in an explicit way. One block type is similar
to the angular filter explored in [9] for material recognition.
The main difference is that [9] reorganizes the 4D information
of the light field in different ways and divide the input into
patches, which are further processed by the VGG-16 network
for patch classification. We observe that this study does not
pay much attention to the angular changes that may arise due
to the network parameters, as it lacks an in-depth analysis
of the relationship between its learned features and reflected
information beneficial to material recognition. In contrast,
inspired by the micro-lens array hardware configuration of
light field cameras, the proposed MAC blocks are specially
tailored to process micro-lens images in an explicit way. The
network parameters are designed to sample different views
and capture view dependencies by performing non-overlapping
convolution on each micro-lens image. We experimentally
show that the angular changes are consistent with the view-
point variations of micro-lens images, and the effective angular
changes of each pixel may increase depth selectivity and the
ability for accurate saliency detection. Figure 2 provides an
overview of the proposed network.

To train such a deep convolutional network, we introduce
a comprehensive, realistic and challenging benchmark dataset
for light field saliency detection. Using a Lytro Illum camera,
we collect 640 light fields with significant variations in terms
of size, amount of texture, background clutter and illumination.
For each light field, we provide a high-quality micro-lens
image array that contains multiple viewpoints for each spatial
location. The micro-lens image array is firstly used as input
for light field saliency detection. Then, we annotate per-pixel
ground truth for each central viewing image.

Our contributions are summarized as follows:
• We construct a new light field dataset for saliency detec-

tion, which comprises of 640 high-quality light fields
and the corresponding per-pixel ground-truth saliency
maps. This dataset enables efficient deep network training
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for saliency detection, and addresses new challenges in
saliency detection such as inconsistent illumination and
small salient objects in the cluttered or similar back-
ground.

• We propose an end-to-end deep convolutional network
for predicting saliency on light field micro-lens images.
To the best of our knowledge, no work has been reported
on employing deep learning techniques for saliency detec-
tion to learn angular features from one single light field
image.

• We provide an analysis of the proposed architec-
ture variants specifically designed for light-field inputs.
We also quantitatively and qualitatively compare our
best-performing architecture with the 2D model using the
central viewing image and other 2D RGB-based methods.
We show that our network outperforms state-of-the-art
methods on the proposed dataset and generalizes well to
other datasets.

The remainder of this paper is structured as follows. The
next section summarizes related work on light field datasets,
saliency detection from light field images, and saliency detec-
tion using deep learning technologies. We introduce our novel
Lytro Illum saliency dataset in Section III. We introduce
our novel MAC blocks in Section IV and evaluate them in
Section V. We conclude in Section VI.

II. RELATED WORK

A. Light Field Datasets for Saliency Detection

There are only two existing datasets designed for light field
saliency detection, both recorded with Lytro’s first-generation
cameras, which is capable of refocusing images after being
taken. The Light Field Saliency Database (LFSD) [1] contains
100 light fields with 360×360 spatial resolution. A rough focal
stack and an all-focus image are provided for each light field.
The images in this dataset usually have one salient foreground
object and a background with good color contrast. The limited
complexity of the dataset is not sufficient to address the variety
of challenges for saliency detection when using a light field
camera, such as illumination variations and small objects on
the similar or cluttered background. Later, Zhang et al. [2]
proposed the HFUT-Lytro dataset, which consists of 255 light
fields with complex backgrounds and multiple salient objects.
Each light field has a 7 × 7 angular resolution and 328 × 328
pixels of spatial resolution. Focal stacks, sub-aperture images,
all-focus images, and coarse depth maps are provided in this
dataset. However, the color channels in their sub-aperture
images are distorted owing to the under-sampling during
decoding [35]. In this work, we use a second generation Lytro
Illum camera to build a larger, higher-quality and more chal-
lenging saliency dataset by capturing more variations in illumi-
nance, scale, and position. These two types of cameras differ
in the number of microlenses and the number of pixels in the
sensor beneath a microlens. Compared to the first-generation
Lytro camera with a 11 megaray light-field sensor, the Lytro
Illum comes equipped with a 40-megaray sensor. Therefore,
the light field data obtained from a Lytro Illum camera have
larger spatial resolution and angular resolution than those from
the the first-generation Lytro camera. In addition, Lytro Illum’s

refocusing is finer and more granular, which allows to extend
the refocusable range by capturing 3 or 5 consecutive images at
different depths. In our work, we also generate the micro-lens
image array from every decoded light field, which is not
provided in previous datasets.

B. Saliency Detection on Light Field Images

Previous methods for light field saliency detection rely on
superpixel-level hand-crafted features [1], [2], [19], [20], [36].
Pioneering work by Li et al. [1], [36] shows the feasibility
of detecting salient regions using all-focus images and focal
stacks from light fields. Zhang et al. [19] explored the light
field depth cue in saliency detection, and further computed
light field flow fields over focal slices and multi-view sub-
aperture images to capture depth contrast [2]. In [20], a dic-
tionary learning-based method is presented to combine various
light field features using a sparse coding framework. Notably,
these approaches share the assumption that dissimilarities
between image regions imply salient cues. In addition, some of
them [2], [19], [20] also utilize refinement strategies to enforce
neighboring constraints for saliency optimization. In contrast
to the above methods, we propose a deep convolutional net-
work by learning efficient angular kernels without additional
refinement on the upsampled image.

C. Deep Learning for Saliency Prediction

In the early days, saliency detection focused on using eye
fixation locations as saliency maps, where the ground-truths
are usually obtained by summing eye fixation binary maps of
individual subjects and smoothed with a Gaussian of width
dependent on the eye tracking set up. With the develop-
ment of deep learning technologies, many deep networks are
pre-trained on the ImageNet dataset [37], which makes the
networks capable of identifying objects. Therefore, salient
object detection has been attracting an increasing amount of
research effort [21]–[27], thanks to the powerful representation
learning methods. In these works, images are annotated salient
objects with pixel-wise binary masks. In our work, we aim at
detecting distinct salient objects/regions which attract human
most.

Since the task is closely related to pixel-wise image classifi-
cation, most works have built upon successful architectures for
image recognition on the ImageNet dataset, often initializing
their networks with the VGG network [38]. For example,
several methods directly use CNNs to learn effective contex-
tual features and combine them to infer saliency [23], [24].
Other methods extract features at multiple scales and gen-
erate saliency maps in a fully convolutional way [39], [40].
Recently, attention models [25], [26] have been introduced to
saliency detection to mimic the visual attention mechanism
by focusing on informative regions in visual scenes. Another
direction for improving the quality of the saliency maps is
the use of a recurrent structure [27], which mainly serves as
a refinement stage to correct previous errors. Although deep
CNNs have achieved great success in saliency detection, none
of them addresses challenges in the 4D light field. Directly
applying the existing network architectures to light field
images would not be appropriate because a standard network
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is not particularly good at capturing viewpoint changes in light
fields.

D. Deep Learning Technologies on Light Field Data

Recently, in terms of different light field image types,
learning-based techniques have been explored for light field
image processing. Yoon et al. [17] proposed a deep learning
framework for spatial and angular super-resolution, in which
two adjacent sub-aperture images are employed to generate the
in-between view. Wang et al. [41] built a bidirectional recur-
rent CNN to super-resolve horizontally and vertically adja-
cent sub-aperture image stacks separately and then combined
them using a multi-scale fusion scheme to obtain complete
view images. Very recently, Zhang et al. [42] designed a
residual network structure to process one central view image
and four stacks of sub-aperture images from four angular
directions. Residual information from different directions is
then combined to yield the high-resolution central view image.
Kalantari et al. [43] proposed the first deep learning framework
for view synthesis. They applied two sequential CNNs on only
four corner sub-aperture images to model depth and color
estimation simultaneously by minimizing the error between
synthesized views and ground truth images. Wu et al. [18]
introduced the “blur-restoration-deblur” framework for light
field reconstruction on 2D EPIs (epipolar plane images).
In order to directly synthesize novel views of dense 4D
light fields from sparse views, Wang et al. [44] assembled
2D strided convolutions operated on stacked EPIs and two
detail-restoration 3D CNNs connected with angular conversion
to build a pseudo 4D CNN. Heber et al. [45] applied a
CNN in a sliding window fashion for shape from EPIs, which
allows to estimate the depth map of a predefined sub-aperture
image. In the successive work [46], they designed a U-shaped
network for disparity estimation operating on a EPI volume
with two spatial dimensions and one angular dimension.
Wang et al. [33] proposed the first and concurrent work on
light field saliency using deep learning, in which they inves-
tigated different fusion structures to integrate the focal stack
stream and the all-focus stream. To increase the diversity of
the input data, they also used adversarial examples to facilitate
training and improving the robustness of the network. Their
work focuses on combining the light field data. In contrast, our
approach is designed for learning angular features based on
the micro-lens array hardware configuration, and we compare
three different architectures using micro-lens images as inputs.
The most similar to our work is [9], which proposes several
CNN architectures based on different light field image types.
One of the architectures is developed for the images similar
to raw micro-lens images. However, the network is mainly
designed to verify the advantages of multi-view information
of light field compared with 2D RGB images in material
recognition. In contrast, our work specifically focuses on the
learned angular features from micro-lens images and their
relationship with salient/non-salient cues.

III. THE LYTRO ILLUM SALIENCY DATASET

To train and evaluate our network for saliency detection,
we introduce a comprehensive novel light field dataset.

A. Light Field Representation

There are various ways to represent the light field [7], [47],
[48]. We adopt the two-plane parameterization [7] to define the
light field as a 4D function L (u, v, x, y), where u×v indicates
the angular resolution and x×y indicates the spatial resolution.
As illustrated in Figures 1(a) and (b), a set of all incoming
rays from the uv plane intersected with a given micro-lens
location (x∗, y∗) produces a micro-lens image with multiple
viewpoints L M (u, v, x∗, y∗). The micro-lens images from
different locations can be arranged into a micro-lens image
array. As shown in Figures 1(c) and (d), all micro-lens regions
on the xy plane receive the incoming rays from a given angular
position (u∗, v∗), which produces a sub-aperture image with
all locations LS (u∗, v∗, x, y). The central viewing image is
formed by the rays passed through the main lens optical
center (u = u0, v = v0). Since the sub-aperture images contain
optical distortions caused by the light rays passed through the
lens [49], [50], in this paper, we build our network based on
the micro-lens images, which have been shown advantages
over the sub-aperture images for scene reconstruction [51].

B. Dataset Construction

Figure 3 illustrates the procedure of our light field dataset
construction. First, a set of 4D light fields are obtained using
a Lytro Illum camera (Figure 3(a)). Second, we use Lytro
Power Tools (LPT) [52] to decode light fields from raw 4D
data to 2D sub-aperture images so that each light field has a
spatial resolution of 540 × 375 and an angular resolution of
14 × 14. To reach a compromise on the training time and the
detection accuracy, we sample 9 × 9 viewpoints from each
light field to generate new sub-aperture images, as shown
in Figure 3(b). Third, we generate a micro-lens image by
sampling the same spatial location from each sub-aperture
image (see Figure 3(e)), which further produces a micro-lens
image array of size 4860 × 3375, shown in Figure 3(c).
The red region indicates one pixel with 9 × 9 observation
viewpoints in Figure 3(c), comparing to one pixel only with
the central view in Figure 3(d). We initially collect 800 light
fields and manually annotate the per-pixel ground-truth label
for each central viewing image. To reduce label inconsistency,
each image is annotated by five independent annotators. We
only regard a pixel as salient if it is verified by at least
three annotators. We only keep those images with sufficient
agreement. In the end, our new dataset contains 640 light fields
with 81 views.

Figure 4 shows eight examples of central viewing images
and their corresponding ground-truth saliency maps. There are
significant variations in illumination, spatial distribution, scale
and background. Besides, there are multiple regions for some
saliency annotations.

IV. LIGHT FIELD SALIENCY NETWORK

We propose an end-to-end deep convolutional network
framework for light field saliency detection as shown
in Figure 2. Based on the micro-lens image array, the MAC
(Modal Angular Changes) blocks are designed to transfer the
light field inputs to feature maps in different ways. Then,
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Fig. 3. Flowchart of the dataset construction. (a) Lytro Illum camera. (b) Sub-aperture images. (c) Micro-lens image array. (d) Ground-truth map for the
central viewing image. (e) The generation of a micro-lens image array from sub-aperture images. The digits indicate viewpoints.

Fig. 4. Example central viewing images (top) and their corresponding ground-truth saliency maps (bottom) from our novel Lytro Illum dataset.

the feature maps are fed to a modified DeepLab-v2 [34] to
predict saliency maps. We first discuss the backbone model
and then detail different MAC block variants.

A. Backbone Model

We formulate light field saliency detection as a binary pixel
labeling problem. Saliency detection and semantic segmenta-
tion are closely related because both are pixel-wise labeling
tasks and require low-level cues as well as high-level seman-
tic information. Inspired by previous literature on semantic
segmentation [34], [53], [54], we design our backbone model
based on DeepLab [54], which is a variant of FCNs [53]
modified from the VGG-16 network [38]. There are sev-
eral variants of DeepLab [34], [55], [56]. In this work,
we use DeepLab-v2 [34], which introduces atrous spatial
pyramid pooling (ASPP) to capture multi-scale information
and long-range spatial dependencies among image units.

The modified network is composed of five convolutional
(conv) blocks, each of which is divided into convolutions
followed by a ReLu. A max-pooling layer is connected after

the top conv layer of each conv block. The ASPP is applied
on top of block5, which consists of four branches with atrous
rates (r = {6, 12, 18, 24}). Each branch contains one 3 × 3
convolution and one 1 × 1 convolution. The resulting features
from all branches are then passed through another 1 × 1
convolution and summed to generate the final score. The
network further employs bilinear interpolation to upsample
the fused score map to the original resolution of the central
viewing image, which produces the saliency prediction at the
pixel level. In addition, we add dropout to all the conv layers
of the five blocks to avoid overfitting and set the 1 × 1
conv layer with 2 channels after ASPP to produce saliency
and non-saliency score maps. The detailed architecture is
illustrated in Figure 5.

B. MAC Blocks

Our network is essentially a modified DeepLab-v2 net-
work augmented with a light field input process. As shown
in Figure 2, a MAC block is a basic computational unit
operating on a micro-lens image array input M ∈ R

W×H×C
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Fig. 5. Network structure of the backbone model based on DeepLab-v2 [34]. The reduction in resolution is shown at the top of each box.

Fig. 6. Architectures of the proposed MAC blocks. (a) MAC block-9 × 9. (b) MAC block-3 × 3. (c) MAC block-star shaped. The selected viewpoints are
highlighted in red.

and producing an output feature map F ∈ R
W �×H �×C �

. Here,
W = Nx × Nu and H = Ny × Nv , in which (Nx , Ny) is the
spatial size and (Nu , Nv ) is the view size, respectively. The
motivation of the MAC block is to model angular changes at
one pixel location in an explicit manner. An essential part
of learning angular features is the design of convolutional
kernels applied on the micro-lens images. However, it is
unclear what defines “good” angular filters and how many
angular directions should be chosen for better performance.
In this paper, we propose three different MAC block variant
architectures to process light field micro-lens image arrays
before block1 of the backbone model, in which convolutional
methods with kernel sizes, stride size and sampled viewpoints
are all designed to capture angular changes in light fields,
as shown in Figure 6.

For the design simplicity of the MAC block, some default
settings are fixed to guarantee that the predicted map and the
ground truth map have the same spatial resolution in a fully
convolutional network architecture. First, the spatial dimension
of output of the MAC block is ensured to be the same with
that of the 2D sub-aperture image, i.e. W � = Nx and H � = Ny .
Second, the number C � of convolutional kernels in the MAC
block is the same as that of convolution kernels in block1 of
DeepLab-v2. In our case where the data are captured by a
Lytro Illum camera, the MAC block converts the light field
input data into a 540 × 375 × 64 feature map. The parameters

of MAC block variants, including the kernel size k × k × C
and the convolutional stride s, should meet the above two
conditions. We now discuss the detailed architectures of the
three proposed MAC blocks.

1) MAC Block-9 × 9: As described in Section III-B, each
micro-lens image has 9 × 9 viewpoints and can be consid-
ered as one of the pixel locations. The spatial resolution
is 540 × 375 thus the size of the whole micro-lens image
array is 4860 × 3375. In this architecture, we design angular
convolutional kernels across all viewpoint directions, as shown
in Figure 6(a). The kernel size shares the same angular
resolution of one micro-lens image, and the number of kernels
and the stride size are set to extract angular features for each
micro-lens image. Specifically, we propose 64 angular kernels,
each of which is a 9 × 9 filter. The stride of convolution
operations is 9, which leads to 540 × 375 × 64 feature maps.
Each point on the feature map can be considered as being
captured by the 81 lenslets. These kernels differ from common
convolutional kernels applied on 2D images in that they only
detect the angular changes in the micro-lens image array.
This architecture directly learns the angular information from
light field images, and thus is expected to distinguish salient
foregrounds and backgrounds with similar colors or textures.

2) MAC Block-3 × 3: Motivated by the effectiveness of the
smaller kernels in VGG-16 [38] and Inception v2 [55], we
replace the 9 × 9 convolution in MAC block-9 × 9 with two
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layers of 3 × 3 convolution (stride= 3) shown in Figure 6(b),
which increases the number of parameters while enhancing
the network nonlinearity.

3) MAC Block-Star Shaped: We design atrous angular con-
volutional kernels to capture long-range angular features. The
atrous rates are set to sample representative viewpoint direc-
tions. It has been shown that using selected angular directions
is beneficial in the context of depth estimation [14], [57].
Here, we test the application in saliency detection. Different
from MAC block-9 × 9, we select star-shaped viewpoints (i.e.
four directions θ = {0◦, 45◦, 90◦, 135◦}) from each micro-lens
image. To implement viewpoint sampling and angular filtering,
we use atrous convolution with five atrous rates, as shown
in Figure 6(c). The resulting feature maps are concatenated
and combined using 1 × 1 convolutions for later processing.

Adaptation: Note that although the proposed framework
is specially tailored to process micro-lens based light field
data for saliency detection, in theory, the proposed network
could be adapted to different types of light field data as
well if the camera acquires the same pixel with sufficient
different views. However, directly using the proposed network
to process other types of light field data potentially has the
following problems. (i) The number of views is usually limited
and the resulting images suffer from angular aliasing due to the
poor angular sampling of other cameras, such as multi-camera
arrays [58] and light field gantries [59]. (ii) For sparse and
wide-baseline light fields captured by multi-camera arrays,
convolution operating over the full resolution of light fields
may be prohibitively memory intensive and computationally
expensive. (iii) Compared to micro-lens based light field
cameras offered by simple design, flexibility and little marginal
costs, other light field systems are generally impractical for the
outdoor data collection due to the complex, heavy, and cost
of the capturing system. It is difficult to construct a realistic
and challenging saliency dataset of a certain scale. Therefore,
the proposed network in this paper is currently only applicable
to micro-lens based light field data with a set of dense views.

V. EXPERIMENTAL RESULTS

Our experimental evaluation is split up into three main
parts. The first section evaluates the three variations of the
MAC blocks to identify the network design that works best
for light-field saliency detection. The second section discusses
the angular resolution, the overfitting issue and the advan-
tages of the selected variant of the MAC block compared to
2D saliency detectors. Finally, the third section shows the
performance we can attain based on the best performing
model. We show state-of-the-art results on the new Lytro
Illum, HFUT-Lytro [2] and LFSD datasets [1], based on a
pre-trained network on the proposed dataset.

A. Settings

1) Implementation and Training: The computational envi-
ronment has an Intel i7-6700K CPU@4.00GHz, 15GB RAM,
and an NVIDIA GTX1080Ti GPU. We trained our net-
work using the Caffe library [60] with the maximum iter-
ation step of 160K. We initialize the backbone model with

Fig. 7. Light field image examples. (a) The HFUT-Lytro dataset. (b) The
proposed Lytro Illum dataset. Left: the all-focus images and the central
viewing images are shown for the two datasets, respectively. Right: nine
sub-aperture images are randomly sampled for each light field.

Fig. 8. Visual comparison of different MAC block variants. (a) Central
viewing images. (b) Ground truth maps. (c) MAC block-9 × 9. (d) MAC
block-3 × 3. (e) MAC block-star shaped.

DeepLab-v2 [34] pre-trained on the PASCAL VOC 2012 seg-
mentation benchmark [61]. The newly added conv layers in
the MAC block, the first layer of block1, and the score layer
are initialized using the Xavier algorithm [62]. The whole
network is trained end-to-end using the stochastic gradient
descent (SGD) algorithm. To leverage the training time and
the image size, we use a single image batch size. Momentum
and weight decay are set to 0.9 and 0.0005, respectively.
The base learning rate is initialized as 0.01 for the newly
added conv layers in the MAC block and the first layer
of block1, and 0.001 with the poly decay policy for the
remaining layers. A dropout layer with probabilities p =
[0.1, 0.1, 0.2, 0.2, 0.3, 0.5] is applied after conv layers for
block1–block5 and ASPP, respectively.

We use the softmax loss function defined as

L = − 1

W × H

W∑

i=1

H∑

j=1

log
ez

yi, j
i, j

ez0
i, j + ez1

i, j

(1)

where W and H indicate the width and height of an image,
z0

i j and z1
i j are the last two activation values of the pixel

(i, j) and yi j is the ground-truth label of the pixel (i, j). Note
that yi j is 1 only when pixel (i, j) is salient. Our code and
dataset are available at https://github.com/pencilzhang/MAC-
light-field-saliency-net.git.
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Fig. 9. Visual comparison of our 4D model (top) and 2D model using the central view (bottom). (a) Visualization of the first conv layers. (b) Light field
input with highlighted regions. (c) Saliency predictions. (d) Ground truth maps.

2) Datasets: Three datasets are used for benchmarking: the
proposed Lytro Illum dataset, the HFUT-Lytro dataset [2], and
the LFSD dataset [1]. Our network is trained and evaluated
on the proposed Lytro Illum dataset using a five-fold cross-
validation. The trained model is further tested on the other two
datasets to evaluate the generalization ability of our network.
Note that the unavailable viewpoints in the LFSD dataset and
the color distortion of sub-aperture images in the HFUT-Lytro
dataset (see examples in Figure 7 for visual comparison) are
unsuitable for evaluation of our method. To apply the trained
model on the two datasets, we pad the angular resolutions to
9 × 9 using the all-focus image.

3) Data Augmentation: In order to obtain more training
data to achieve good performance without overfitting, we
augment the training data aggressively on-the-fly. To facilitate
this augmentation, we use geometric transformations (i.e. rota-
tion, flipping and cropping), changes in brightness, contrast,
and chroma as well as additive Gaussian noise. Specifically,
we rotate the micro-lens image array 90, 180, and 270 degrees,
and perform horizontal and vertical flipping. To change the rel-
ative position of the saliency region in the image, we randomly
crop two subimages of 3519 × 2907 size from the micro-lens
image array. Then for one subimage and the image arrays with
0, 90, and 180 degrees of rotation, we adjust the brightness by
multiplying all pixels by 1.5 and 0.6, respectively, and both
chroma and contrast by the multiplication factor 1.7. Finally,
we add the zero-mean Gaussian noise with variance of 0.01
to all images. In total, we expand the micro-lens image array
by 48 ((4 × 4 + 8) × 2) such that the whole training dataset
is increased from 512 to 24, 576.

4) Evaluation Metrics: We adopt five metrics to evaluate
our network. The first one is precision-recall (PR) curve.
Specifically, saliency maps are first binarized under varying
thresholds and then compared to the ground truths. The second
metric is Fβ–measure, which considers both precision and
recall

Fβ = (1 + β2)Precision · Recall

β2 · Precision + Recall
(2)

Fig. 10. Feature maps obtained from (a) 4D model and (b) 2D model using
the central view from different layers. From top to bottom: the first conv
features of block1, block5 output features, ASPP features with four atrous
rates, and the score fusion maps via sum-pooling. For ASPP and sum fusion,
the non-salience and salience scores are shown in the left and right subfigures,
respectively.

where β2 is set to 0.3 as suggested in [30]. Following previous
work [22], [30], [31], we determine the adaptive threshold
as twice the average value of the predicted saliency map
to generate the binary map and report the corresponding
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Fig. 11. Training and validation loss for our model on the proposed Lytro Illum dataset. (a) Original training data. (b) Training with DG. (c) Training with
dropout. (d) Training with DG and dropout. (e) PR curves for different strategies.

TABLE I

QUANTITATIVE RESULTS ON THE PROPOSED LYTRO ILLUM DATASET

mean F-measure value. The third metric is Average Preci-
sion (AP), which is computed by averaging the precision
values at evenly spaced recall levels. The fourth metric is
Mean Absolute Error (MAE), which directly computes the
average absolute per-pixel difference between the predicted
map and the corresponding ground truth map. Additionally,
to amend several limitations of the above four metrics, such
as interpolation flaw for AP, dependency flaw for PR curve
and Fβ–measure, and equal-importance flaw for all metrics,
as suggested in [63], we use weighted Fw

β (WF)–measure
based on weighted precision and recall as the fifth metric

Fw
β = (1 + β2)Precisionw · Recallw

β2 · Precisionw + Recallw
(3)

where w is a weighting function based on the Euclidean
distance to calculate the pixel importance from the ground
truth.

B. Evaluation of MAC Blocks

We present a detailed performance comparison among dif-
ferent MAC block variant architectures on the proposed Lytro
Illum dataset. As described in Section IV-B, these variants
only differ in the convolution operations applied on their light
field inputs. The quantitative results of the comparison are
shown in Table I, from which we can see that the MAC
block-9 × 9 architecture achieves the best performance for all
metrics on the proposed dataset. We hypothesize that treating
every micro-lens image as a whole and applying the angular
kernels that have the same size with the angular resolution of
the light field can help to exploit the multi-view information
in the micro-lens image array. The detection performances of
two other variants are lower, probably because the increased
number of parameters make the network more difficult to train.

Figure 8 presents qualitative results of all variants. As illus-
trated in the figure, these variants can separate the most salient
regions from similar or cluttered backgrounds. Compared to
other variants, MAC block-9 × 9 outputs cleaner and more

Fig. 12. Qualitative comparison of 4D model and 2D-central view. (a) Central
viewing images. (b) Ground-truth maps. (c) Ours. (d) 2D-central view.

consistent predictions for the regions with specular reflections
(row 1), small salient objects (row 2), and similar foreground
and background (rows 2 and 3). Moreover, we can see that
MAC block-9×9 better predicts salient regions without being
highly affected by the light source (row 4). These results
demonstrate that the proposed network variants are likely
to extract potential depth cues by learning angular changes,
which are helpful to saliency detection. The kernels with the
same size of the angular resolution show better capability in
depth discrimination.

C. Model Analysis

Here, we perform all following experiments using MAC
block-9 × 9, since this setup performed best in previous
evaluation.

1) Effectiveness of the MAC Block: To further delve into
the difference between regular image saliency and light field
saliency, we present some important properties of light field
features that can better facilitate saliency detection. We com-
pare our 4D light field saliency (i.e. MAC block-9 × 9)
to 2D model using the central viewing image as input
(2D-central view). The quantitative results are shown
in Table II. We observe that light field saliency detection with
multi-views turns out to perform better than the 2D detector
with only the central view.

To provide complementary insight of why light field
saliency works, we visualize the weights of the first conv
layers of our network and 2D-central view in Figure 9(a)

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 12,2023 at 10:32:17 UTC from IEEE Xplore.  Restrictions apply. 



4430 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 13. Comparison on three datasets in terms of PR curve. (a) The proposed Lytro Illum dataset. (b) The HFUT-Lytro dataset. (c) The LFSD dataset.

TABLE II

QUANTITATIVE COMPARISON BETWEEN OUR 4D MODEL

AND 2D-CENTRAL VIEW ON THE PROPOSED

LYTRO ILLUM DATASET

to compare angular and spatial patterns. We can see that the
learned weights from our MAC block have noticeable changes
in angular space, which suggests that the viewpoint cue of
light field data is well captured. The angular changes are also
consistent with the viewpoint variations of micro-lens images,
as shown in Figure 9(b). The results are attributed to the
newly designed conv method in which the kernel size is the
same as the angular resolution of the micro-lens image, and
the stride length guarantees angular features are extracted for
each micro-lens image. Therefore, our 4D saliency detector
produces more accurate saliency maps than the 2D detector
shown in Figure 9(c).

In addition, we show the feature maps obtained from the two
models in Figure 10. It can be seen that different layers encode
different types of features. Higher layers capture semantic
concepts of the salient region, whereas lower layers encode
more discriminative features for identifying the salient region.
The proposed 4D saliency detector can well discriminate the
white spout from the white pants, as shown in Figure 10(a).
However, as illustrated in the block1-conv1 and block5 of
Figure 10(b), most feature maps from the 2D detector have
small values that are not discriminative enough to separate the
salient tea cup from the pants. Thus the 2D detector produces
features cluttered with background noise in the following
ASPP and score fusion. More comparisons of saliency maps
between the two models can be seen in Figure 12.

2) Effect of the Angular Resolutions: To show the effect
of the angular resolutions in the network, we compare the
performance of our architecture with varying number of view-
points in Table IV. Note that we change the kernel size to
stay the same with the angular resolution. From the table,

we can see that the network using 9 × 9 viewpoints shows
the best performance overall. Increasing the angular resolution
to 11 × 11 cannot improve the performance, which can be
explained by the fact that the viewing angles at the boundary
are very oblique [71] and the narrow baseline of the light field
camera leads to high viewing redundancy with higher angular
resolutions [7], [72].

3) Overfitting Issues: Overfitting is a common problem
related to training a CNN with limited data. In this section,
we analyse the proposed network by introducing different
strategies to handle overfitting: data augmentation (DG) and
dropout. The results obtained for our best performing model
are shown in Figure 11. Clearly, the network is overfitting with
original training data as shown in Figure 11(a). As expected,
both DG and dropout are crucial to minimize overfitting
as shown in Figures 11(b)–(d). Figure 11(e) presents the
corresponding PR curves. It can be seen that by increasing the
amount and diversity of the data and the amount of dropout
between different layers during training, the performance of
the network increases as well.

D. Comparison With 2D Models

To understand the additional information contained in the
micro-lens light field images, we compare our best performing
approach (i.e. MAC block-9 × 9) to 8 existing methods
on the test set of our proposed dataset. Our comparison
includes 4 traditional approaches MST [64], SMD [65],
MDC [66], WFD [67]; and 4 CNN-based ones: PiCANet [24],
Amulet [68], LFR [69], HyperFusion [70]. To facilitate
fair comparison and effective model training, we use the
recommended parameter settings provided by the authors to
initialize these models. All CNN-based methods are based on
DNNs pre-trained on the ImageNet [37] classification task.
We retrain these CNN models on the proposed dataset in
a five-fold cross-validation way and apply the same data
augmentation method used in our work. The quantitative
results are shown in Table III.

We can see that in general, our model outperforms other
methods in terms of F-measure, MAE, and AP metrics.
Amulet [68] obtains the second best performance on the
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Fig. 14. Visual comparison of our best MAC block variant (Ours) and state-of-the-art methods on three datasets. (a) Central viewing/all-focus images.
(b) Ground truth maps. (c) Ours. (d) LFS [36]. (e) DILF [19]. (f) WSC [20]. (g) Multi-cue [2]. The first five samples are taken from the proposed Lytro Illum
dataset, the middle three samples are taken from the HFUT-Lytro dataset, and the last two samples are taken from the LFSD dataset.

proposed dataset. CNN-based methods consistently perform
better than traditional methods. Additionally, we found that
our whole network learning consumes less GPU memory
compared to most compared 2D deep learning saliency
methods.

E. Comparison to State-of-the-Art Light Field Methods
We compare our best performing model MAC block-9 × 9

to four state-of-the-art methods tailored to light field saliency
detection: Multi-cue [2], DILF [19], WSC [20], and LFS [1].
We train our network on the novel dataset, and evaluate on the
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TABLE III

QUANTITATIVE COMPARISON OF OUR APPROACH AND OTHER
2D MODELS ON THE PROPOSED DATASET. BOLD: BEST,

UNDERLINED: SECOND BEST

TABLE IV

EFFECTS OF THE ANGULAR RESOLUTION ON THE PROPOSED DATASET

TABLE V

QUANTITATIVE RESULTS ON THE PROPOSED LYTRO ILLUM

DATASET. BOLD: BEST, UNDERLINED: SECOND BEST

TABLE VI

QUANTITATIVE RESULTS ON THE HFUT-LYTRO DATASET.
BOLD: BEST, UNDERLINED: SECOND BEST

[19]

others without fine-tuning. The results of other methods are
obtained using the authors’ implementations. Tables V–VII
and Figure 13 show quantitative results on three datasets.
Overall, our approach outperforms other methods on three
datasets without any post-processing for refinement, which
demonstrates the advantage of the proposed deep convolu-
tional network for light field saliency detection. In particular,
we observe that the proposed approach shows significant
performance gains when compared to previous methods on
the proposed dataset for all metrics. The performance is lower
on the HFUT-Lytro and LFSD datasets, which is due to the
limited viewpoint information in these datasets. Therefore,
a large number of filters learnt on the proposed dataset
are underused. This demonstrates that different light field
datasets do affect the accuracy of methods. Multi-cue [2]

TABLE VII

QUANTITATIVE RESULTS ON THE LFSD DATASET.
BOLD: BEST, UNDERLINED: SECOND BEST

and DILF [19] methods show better performance than our
approach in terms of F-measure and AP on the LFSD dataset.
The reason is that these methods use external depth features
and post-processing refinement to improve the performance.

Some qualitative results are shown in Figure 14. We can
see that our approach can handle various challenging sce-
narios, including multiple salient objects (rows 1 and 2),
cluttered backgrounds (rows 3 and 5), small salient objects
(rows 4 and 7), inconsistent illumination (rows 1 and 6), and
salient objects in similar backgrounds (rows 8, 9 and 10).
It is also worth noting that without any post-processing, our
approach can highlight salient objects more uniformly than
other methods.

VI. CONCLUSION

This paper introduces a deep convolutional network for
saliency detection on light fields by exploiting multi-view
information in micro-lens images. Specifically, we propose
MAC block variants to process the micro-lens image array.
To facilitate training such a deep network, we introduce a
challenging saliency dataset with light field images captured
from a Lytro Illum camera. In total, 640 high quality light
fields are produced, making the dataset more suitable for
deep network training. Extensive experiments demonstrate
that comparing to 2D saliency based on the central view
alone, 4D light field saliency can exploit additional angular
information contributing to an increase in the performance
of saliency detection. The proposed network is superior to
saliency detection methods designed for 2D RGB images on
the proposed dataset, and outperforms the state-of-the-art light
field saliency detection methods on the proposed dataset and
generalizes well to the existing datasets. In particular, our
approach is capable of detecting salient regions in challenging
cases, such as with similar foregrounds and backgrounds,
inconsistent illumination, multiple salient objects, and clut-
tered backgrounds. Our work suggests promising future direc-
tions of exploiting spatial and angular patterns in light fields
and deep learning technologies to advance the state-of-the-art
in pixel-wise prediction tasks.
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