13 research outputs found

    Experimental observation of highly anisotropic elastic properties of two-dimensional black arsenic

    Full text link
    Anisotropic two-dimensional layered materials with low-symmetric lattices have attracted increasing attention due to their unique orientation-dependent mechanical properties. Black arsenic (b-As), with the puckered structure, exhibits extreme in-plane anisotropy in optical, electrical and thermal properties. However, experimental research on mechanical properties of b-As is very rare, although theoretical calculations predicted the exotic elastic properties of b-As, such as anisotropic Young's modulus and negative Poisson's ratio. Herein, experimental observations on highly anisotropic elastic properties of b-As were demonstrated using our developed in situ tensile straining setup based on the effective microelectromechanical system. The cyclic and repeatable load-displacement curves proved that Young's modulus along zigzag direction was ~1.6 times greater than that along armchair direction, while the anisotropic ratio of ultimate strain reached ~2.5, attributed to hinge structure in armchair direction. This study could provide significant insights to design novel anisotropic materials and explore their potential applications in nanomechanics and nanodevices.Comment: 19 pages, 5 figure

    Microbial-environmental interactions reveal the evaluation of fermentation time on the nutrient properties of soybean meal

    Get PDF
    Microbial fermentation techniques are often used to improve their quality, where the keys are fermentation strains and fermentation time. This study studied the interaction between microbiota and environmental (or nutritional) factors and microbiota at different fermentation times to determine the most appropriate time, using lactic acid bacteria as fermentation strains. It can be concluded that fermentation improved the nutritional value of soybean meals. In the early stages of fermentation, debris in soybean meal highly proliferated and destabilized the microbial community, while pH and nutritional conditions played an important role in helping its stabilization. In addition, we must pay attention to the interspecific interactions of microorganisms, which makes it easy to understand how the microbial community maintains community stability. A 4-day fermentation of soybean meal with Lactobacillus is recommended

    Pressure-Modulated Structural and Magnetic Phase Transitions in Two-Dimensional FeTe: Tetragonal and Hexagonal Polymorphs

    Full text link
    Two-dimensional (2D) Fe-chalcogenides with rich structures, magnetisms and superconductivities are highly desirable to reveal the torturous transition mechanism and explore their potential applications in spintronics and nanoelectronics. Hydrostatic pressure can effectively stimulate novel phase transitions between various ordered states and to plot the seductive phase diagram. Herein, the structural evolution and transport characteristics of 2D FeTe were systematically investigated under extreme conditions through comparing two distinct symmetries, i.e., tetragonal (t-) and hexagonal (h-) FeTe. We found that 2D t-FeTe presented the pressure-induced transition from antiferromagnetic to ferromagnetic states at ~ 3 GPa, corresponding to the tetragonal collapse of layered structure. Contrarily, ferromagnetic order of 2D h-FeTe was retained up to 15 GPa, evidently confirmed by electrical transport and Raman measurements. Furthermore, the detailed P-T phase diagrams of both 2D t-FeTe and h-FeTe were mapped out with the delicate critical conditions. We believe our results can provide a unique platform to elaborate the extraordinary physical properties of Fe-chalcogenides and further to develop their practical applications.Comment: 22 Pages, 5 Figure

    A Self-Powered Breath Analyzer Based on PANI/PVDF Piezo-Gas-Sensing Arrays for Potential Diagnostics Application

    No full text
    Abstract The increasing morbidity of internal diseases poses serious threats to human health and quality of life. Exhaled breath analysis is a noninvasive and convenient diagnostic method to improve the cure rate of patients. In this study, a self-powered breath analyzer based on polyaniline/polyvinylidene fluoride (PANI/PVDF) piezo-gas-sensing arrays has been developed for potential detection of several internal diseases. The device works by converting exhaled breath energy into piezoelectric gas-sensing signals without any external power sources. The five sensing units in the device have different sensitivities to various gas markers with concentrations ranging from 0 to 600 ppm. The working principle can be attributed to the coupling of the in-pipe gas-flow-induced piezoelectric effect of PVDF and gas-sensing properties of PANI electrodes. In addition, the device demonstrates its use as an ethanol analyzer to roughly mimic fatty liver diagnosis. This new approach can be applied to fabricating new exhaled breath analyzers and promoting the development of self-powered systems

    Changes in daylength and temperature from April until August for Atlantic salmon (Salmo salar) reared in sea cages, increase growth, and may cause consumption of antioxidants, onset of cataracts and increased oxidation of fillet astaxanthin

    No full text
    The hypothesis of the present study was that increased growth in spring, stimulated by increasing temperature and daylength, leads to oxidative stress in Atlantic salmon with accumulation of oxidation products in the tissues and increased utilization of antioxidants. The drop in fillet pigmentation and astaxanthin, often observed in spring by the industry, could be explained by oxidative stress. Furthermore, oxidative stress may cause production related diseases such as development of cataracts and melanin spots in the fillet. We sampled Atlantic salmon from two cages in a commercial scale experiment in Northern Norway (67°N), every month from April until August and then every second month until December (510 ± 160–3060 ± 510 g, mean weight ± std). The specific growth rate (SGR) increased with increasing temperature until midsummer and decreased thereafter. We found that vitamin E in the fillet and vitamin C in the liver were depleted in the spring and were restored in the autumn, even though the dietary concentrations were stable. Astaxanthin concentration in the muscle was constant during the spring and summer and increased in the autumn, concomitant with an increase in astaxanthin supplementation. Cataract increased from zero in May until July, when 90% of the fish were affected. The glutathione based redox-potential in the lenses became more reduced from June, indicating a protective mechanism against oxidative stress and cataract. The number of fish with melanin spots was high in June and decreased in August and October, but the size and intensity of the remaining spots increased in the same period. The change in vitamin C and E concentrations, cataract and glutathione metabolism during spring and early summer, indicate that the fish became oxidized in this period, while malon-di-aldehyde (MDA) and astaxanthin concentrations did not support the hypothesis. There are too few data to draw conclusions on possible effects of oxidative stress on melanin spots

    Changes in daylength and temperature from April until August for Atlantic salmon (Salmo salar) reared in sea cages, increase growth, and may cause consumption of antioxidants, onset of cataracts and increased oxidation of fillet astaxanthin

    No full text
    The hypothesis of the present study was that increased growth in spring, stimulated by increasing temperature and daylength, leads to oxidative stress in Atlantic salmon with accumulation of oxidation products in the tissues and increased utilization of antioxidants. The drop in fillet pigmentation and astaxanthin, often observed in spring by the industry, could be explained by oxidative stress. Furthermore, oxidative stress may cause production related diseases such as development of cataracts and melanin spots in the fillet. We sampled Atlantic salmon from two cages in a commercial scale experiment in Northern Norway (67°N), every month from April until August and then every second month until December (510 ± 160–3060 ± 510 g, mean weight ± std). The specific growth rate (SGR) increased with increasing temperature until midsummer and decreased thereafter. We found that vitamin E in the fillet and vitamin C in the liver were depleted in the spring and were restored in the autumn, even though the dietary concentrations were stable. Astaxanthin concentration in the muscle was constant during the spring and summer and increased in the autumn, concomitant with an increase in astaxanthin supplementation. Cataract increased from zero in May until July, when 90% of the fish were affected. The glutathione based redox-potential in the lenses became more reduced from June, indicating a protective mechanism against oxidative stress and cataract. The number of fish with melanin spots was high in June and decreased in August and October, but the size and intensity of the remaining spots increased in the same period. The change in vitamin C and E concentrations, cataract and glutathione metabolism during spring and early summer, indicate that the fish became oxidized in this period, while malon-di-aldehyde (MDA) and astaxanthin concentrations did not support the hypothesis. There are too few data to draw conclusions on possible effects of oxidative stress on melanin spots

    Changes in daylength and temperature from April until August for Atlantic salmon (Salmo salar) reared in sea cages, increase growth, and may cause consumption of antioxidants, onset of cataracts and increased oxidation of fillet astaxanthin

    Get PDF
    The hypothesis of the present study was that increased growth in spring, stimulated by increasing temperature and daylength, leads to oxidative stress in Atlantic salmon with accumulation of oxidation products in the tissues and increased utilization of antioxidants. The drop in fillet pigmentation and astaxanthin, often observed in spring by the industry, could be explained by oxidative stress. Furthermore, oxidative stress may cause production related diseases such as development of cataracts and melanin spots in the fillet. We sampled Atlantic salmon from two cages in a commercial scale experiment in Northern Norway (67°N), every month from April until August and then every second month until December (510 ± 160–3060 ± 510 g, mean weight ± std). The specific growth rate (SGR) increased with increasing temperature until midsummer and decreased thereafter. We found that vitamin E in the fillet and vitamin C in the liver were depleted in the spring and were restored in the autumn, even though the dietary concentrations were stable. Astaxanthin concentration in the muscle was constant during the spring and summer and increased in the autumn, concomitant with an increase in astaxanthin supplementation. Cataract increased from zero in May until July, when 90% of the fish were affected. The glutathione based redox-potential in the lenses became more reduced from June, indicating a protective mechanism against oxidative stress and cataract. The number of fish with melanin spots was high in June and decreased in August and October, but the size and intensity of the remaining spots increased in the same period. The change in vitamin C and E concentrations, cataract and glutathione metabolism during spring and early summer, indicate that the fish became oxidized in this period, while malon-di-aldehyde (MDA) and astaxanthin concentrations did not support the hypothesis. There are too few data to draw conclusions on possible effects of oxidative stress on melanin spots.publishedVersio
    corecore